close Icon

Mechanism of measles virus-induced suppression of inflammatory immune responses.

Marie JC, Kehren J, Trescol-Biémont MC, Evlashev A, Valentin H, Walzer T, Tedone R, Loveland B, Nicolas JF, Rabourdin-Combe C, Horvat B

VIEW FULL ARTICLE
  • Journal Immunity

  • Published 12 Apr 2001

  • Volume 14

  • ISSUE 1

  • Pagination 69-79

  • DOI 10.1016/s1074-7613(01)00090-5

Abstract

Measles virus (MV) causes profound immunosuppression, resulting in high infant mortality. The mechanisms are poorly understood, largely due to the lack of a suitable animal model. Here, we report that particular MV proteins, in the absence of MV replication, could generate a systemic immunosuppression in mice through two pathways: (1) via MV-nucleoprotein and its receptor FcgammaR on dendritic cells; and (2) via virus envelope glycoproteins and the MV-hemagglutinin cellular receptor, CD46. The effects comprise reduced hypersensitivity responses associated with impaired function of dendritic cells, decreased production of IL-12, and the loss of antigen-specific T cell proliferation. These results introduce a novel model for testing the immunosuppressive potential of anti-measles vaccines and reveal a specific mechanism of MV-induced modulation of inflammatory reactions.