close Icon

HIV-1 predisposed to acquiring resistance to maraviroc (MVC) and other CCR5 antagonists in vitro has an inherent, low-level ability to utilize MVC-bound CCR5 for entry.

Roche M, Jakobsen MR, Ellett A, Salimiseyedabad H, Jubb B, Westby M, Lee B, Lewin SR, Churchill MJ, Gorry PR

VIEW FULL ARTICLE
  • Journal Retrovirology

  • Published 07 Nov 2011

  • Volume 8

  • Pagination 89

  • DOI 10.1186/1742-4690-8-89

Abstract

Maraviroc (MVC) and other CCR5 antagonists are HIV-1 entry inhibitors that bind to- and alter the conformation of CCR5, such that CCR5 is no longer recognized by the viral gp120 envelope (Env) glycoproteins. Resistance to CCR5 antagonists results from HIV-1 Env acquiring the ability to utilize the drug-bound conformation of CCR5. Selecting for HIV-1 resistance to CCR5-antagonists in vitro is relatively difficult. However, the CCR5-using CC1/85 strain appears to be uniquely predisposed to acquiring resistance to several CCR5 antagonists in vitro including MVC, vicriviroc and AD101.

Here, we show that Env derived from the parental CC1/85 strain is inherently capable of a low affinity interaction with MVC-bound CCR5. However, this phenotype was only revealed in 293-Affinofile cells and NP2-CD4/CCR5 cells that express very high levels of CCR5, and was masked in TZM-bl, JC53 and U87-CD4/CCR5 cells as well as PBMC, which express comparatively lower levels of CCR5 and which are more commonly used to detect resistance to CCR5 antagonists.

Env derived from the CC1/85 strain of HIV-1 is inherently capable of a low-affinity interaction with MVC-bound CCR5, which helps explain the relative ease in which CC1/85 can acquire resistance to CCR5 antagonists in vitro. The detection of similar phenotypes in patients may identify those who could be at higher risk of virological failure on MVC.