close Icon

Evidence for Reduced Malaria Parasite Population after Application of Population-Level Antimalarial Drug Strategies in Southern Province, Zambia.

Daniels RF, Schaffner SF, Bennett A, Porter TR, Yukich JO, Mulube C, Mambwe B, Mwenda MC, Chishimba S, Bridges DJ, Moonga H, Hamainza B, Kawesha EC, Miller JM, Steketee RW, Wirth DF, Eisele TP, Hartl DL, Volkman SK

VIEW FULL ARTICLE
  • Published 01 Aug 2020

  • Volume 103

  • ISSUE Suppl 2

  • Pagination 66-73

  • DOI 10.4269/ajtmh.19-0666

Abstract

A mass drug administration trial was carried out in Southern Province, Zambia, between 2014 and 2016, in conjunction with a standard of care package that included improved surveillance, increased access to malaria case management, and sustained high levels of vector control coverage. This was preceded by mass test and treatment in the same area from 2011 to 2013. Concordant decreases in malaria prevalence in Southern Province and deaths attributed to malaria in Zambia over this time suggest that these strategies successfully reduced the malaria burden. Genetic epidemiological studies were used to assess the consequences of these interventions on parasite population structure. Analysis of parasite material derived from 1,620 rapid diagnostic test (RDT)-positive individuals obtained from studies to evaluate trial outcomes revealed a reduction in the average complexity of infection and consequential increase in the proportion of infections that harbored a single parasite genome (monogenomic infections). Highly related parasites, consistent with inbreeding, were detected after interventions were deployed. Geographical analysis indicated that the highly related infections were both clustered focally and dispersed across the study area. These findings provide genetic evidence for a reduced parasite population, with indications of inbreeding following the application of comprehensive interventions, including drug-based campaigns, that reduced the malaria burden in Southern Province. Genetic data additionally revealed the relationship between individual infections in the context of these population-level patterns, which has the potential to provide useful data for stratification and targeting of interventions to reduce the malaria burden.