γδ T cells and CD14+ monocytes are predominant cellular sources of cytokines and chemokines associated with severe malaria

Danielle I. Stanisic1,2,*, Julia Cutts1,*, Emily Eriksson1,6, Freya JI Fowkes3, Anna Rosanas-Urgell2, Peter Siba2, Moses Laman2,4, Timothy ME Davis4, Laurens Manning4, Ivo Mueller1,2,5, Louis Schofield1,7

1Division of Infection and Immunity, Walter and Eliza Hall Institute, Parkville, Victoria, Australia
2Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
3Burnet Institute for Medical Research and Public Health, Prahan, Victoria, Australia
4School of Medicine and Pharmacology, University of Western Australia, Fremantle Hospital, Fremantle, Western Australia, Australia
5Center de Recerca en Salut Internacional de Barcelona (CRESIB), Barcelona, Spain
6University of Melbourne, Department of Medical Biology, Parkville, Victoria, Australia, Australian Institute of Tropical Health and Medicine, James Cook University, Queensland, Australia

Corresponding author: Prof. L. Schofield, E: schofield@wehi.edu.au; P: 61-3-9345-2474; F: 61-3-9347-0852.

*These authors contributed equally to this work.
ABSTRACT

BACKGROUND: Severe malaria (SM) is associated with high levels of cytokines such as TNF, IL-1 and IL-6. The role of chemokines is less clear, as is their cellular source.

METHODS: In a case-control study of children with SM (n=200), uncomplicated malaria (UM) (n=153) and healthy community controls (HC) (n=162) in Papua New Guinea, we measured cytokine/chemokine production by Peripheral Blood Mononuclear Cells (PBMCs) stimulated with live *P. falciparum* parasitised red blood cells (pRBC). Cellular sources were determined. Associations between immunological endpoints and clinical/parasitological variables were tested.

RESULTS: Compared to HC and UM, children with SM produced significantly higher IL-10, IP-10, MIP-1β and MCP-2. TNF and MIP-1α were significantly higher in the SM compared to the UM group. IL-10, IL-6, MIP-1α, MIP-1β and MCP-2 were associated with increased odds of SM. SM syndromes were associated with distinct cytokine/chemokine response profiles compared to UM cases. TNF, MIP-1β and MIP-1α were produced predominantly by monocytes and γδ T cells, and IL-10 by CD4+ T cells.

CONCLUSIONS: Early/innate PBMC responses to pRBC in vitro are informative as to cytokines/chemokines associated with SM. Predominant cellular sources are monocytes and γδ T cells. Monocyte-derived chemokines support a role for monocyte infiltrates in the aetiology of SM.
INTRODUCTION

Malaria remains a major cause of morbidity and mortality worldwide. 1-2% of clinical \textit{P. falciparum} infections lead to life-threatening severe malaria that may involve impaired consciousness, coma, acute respiratory disease, severe anaemia, metabolic acidosis, and multi-organ failure. Various parasite- and host-specific processes contributing to disease include microvasculature obstruction by parasites, local inflammatory infiltrates and an inappropriate or uncontrolled systemic host immune response [1-3].

The early, inflammatory immune response to malaria involves monocytes, macrophages, CD4$^+$ T cells, $\gamma\delta$ T cells, and NK cells [4-7], and may limit parasite growth. Cytokines such as IL-12, IFN-γ and TNF produced by innate immune cells in response to parasites are associated with reduced prospective risk of symptomatic and high-density infections, and time-to-reinfection [8-11]. Such responses are however also proposed to contribute to severe malarial disease [1, 2]. High, circulating levels of the cytokines TNF, IL-1, IFN-γ, IL-10 and IL-6 are observed in plasma or sera from severe malaria cases at presentation [12, 13]. Compared with cytokines, only a few studies have examined chemokines in human severe malaria [14-17].

Most studies examining the role of these mediators in severe malaria have measured levels in plasma/serum [15, 17-20]. This provides, at best, an indirect estimation of true cellular production. Plasma/serum TNF concentrations may be misleading as TNF also occurs in complex with soluble TNF receptor, and thus is not bioavailable [21]. More accurate measures of cytokines and chemokines may be obtained by examining production directly from cellular sources. However, the composition of peripheral blood is highly altered during
acute malaria due to leukocyte sequestration, and PBMCs show pronounced anergy or hyporesponsiveness under these conditions [22-26].

To further elucidate critical cytokine and chemokine networks associated with susceptibility to severe disease, and identify their cellular sources, we examined associations between risk of severe malaria and short-term IFN-γ, IL-10, IL-1β, IL-6, IP-10, TNF, MIP-1α, MIP-1β and MCP-2 responses by PBMCs to *P. falciparum* pRBCs, within the context of a pediatric severe malaria case control study in an area of high malaria endemicity in Papua New Guinea. As clinically overt *P. falciparum* infection down-regulates cellular responsiveness and modifies the cellular composition of peripheral blood [22-26] we utilised convalescent samples, after homeostatic normalisation of peripheral cellular composition. This is thought to provide a better estimate of an individual’s intrinsic capacity to produce cytokines/chemokines [8, 24].

MATERIALS AND METHODS

Study area, design and participants. A severe malaria case-control study was conducted from 2006-2009 in Madang (pop. ~450,000), an area of holoendemic transmission of *P. falciparum* and *P. vivax* in Papua New Guinea [27, 28]. Modilon Hospital is the provincial hospital to which most children with severe illness are referred.

Based on sample availability, a sub-set of children in the main case-control study were utilised for this immunological study. Severe malaria (SM) cases included children aged 6 months-10 years (n=200) admitted to Modilon Hospital with a diagnosis of severe malaria according to WHO guidelines [29]. Briefly, this included children positive for asexual *Plasmodium* parasites by Giemsa-stained thick blood film or PCR presenting with any of the
following conditions: impaired consciousness or coma (Blantyre Coma Score (BCS) <5[30]); prostration; multiple seizures; hyperlactataemia (blood lactate >5 mmol/L); severe anaemia (haemoglobin <50 g/L); dark urine; hypoglycaemia (blood glucose ≤2.2 mmol/L); jaundice; respiratory distress; persistent vomiting; abnormal bleeding; or signs of shock. PBMCs were isolated from convalescent bleeds, collected 2-3 months after cases were discharged.

Uncomplicated malaria (UM) controls included children that had a positive rapid diagnostic test (ICT Diagnostics Malaria Combo Cassette ML02), were positive for asexual P. falciparum parasites by Giemsa-stained thick blood film or PCR and displayed fever but no evidence of severe disease (n=153). These children were recruited from immunization clinics, the hospital Paediatric Outpatient Clinic, and health centres. PBMC for elicitation assays were isolated from samples collected at 2-3 months after the malaria episode.

Healthy community (HC) controls were recruited from community immunization clinics surrounding Madang township and did not have acute illness or history of malaria within the previous two weeks (n=162). PBMCs from these healthy children were isolated from bleeds taken at enrolment and were collected within 2-4 weeks of the enrolment of matched severe malaria cases. Both UM and HC were matched with SM cases by age, sex, and province of parents’ birth.

Ethics statement. Written informed consent for participation was sought from the parent(s)/guardian(s) at recruitment. The study was approved by the three relevant HRECs (PNG Medical Research Advisory Committee, PNGIMR Institutional Review Board and WEHI HREC).
Laboratory Procedures. Giemsa-stained thick blood films were made during PBMC collection. Parasitemia was quantified by two independent microscopists with discrepancies resolved by a third. Parasite density was calculated per 200 leukocytes, assuming peripheral blood leukocyte counts of 8000/µl. The final density was the geometric mean of the two values. Published PCR methods [31, 32] were used for parasite detection in enrolment samples from individuals with severe and uncomplicated malaria. Haemoglobin levels were measured by Hemocue.

PBMC isolation was performed following blood collection. Blood was diluted 1:1 in PBS and PBMCs isolated by density centrifugation with Ficoll-Paque PLUS (Amersham). PBMCs were washed, resuspended at 1x10⁷ cells/ml in 90% fetal bovine serum (FBS)/10% dimethyl sulfoxide and frozen to -80°C at 1°C per min in freezing containers for 24 hours (Nalgene), before transfer to liquid N₂ for storage.

Cultivation of P. falciparum. P. falciparum (3D7) was cultivated at 37°C with 5% CO₂, 1% O₂, and 1% N₂ at 4% haematocrit using O⁺ human erythrocytes and 10% O⁺ human serum (Australian Red Cross Blood Service) in RPMI-1640 with 25mM HEPES, 2mg/ml glucose, 28mM sodium bicarbonate, 25mg/ml gentamicin, and 200µM hypoxanthine. Sorbitol-synchronized, knob-selected, Mycoplasma-negative, schizont stage pRBCs were purified by using CS columns (Miltenyi Biotec).

PBMC stimulation assays. Upon thawing, PBMCs were washed three times in complete medium (RPMI-1640, 5% heat-inactivated FBS, 2mM L-glutamine, 20mM HEPES, 100U/ml penicillin, and 100mg/ml streptomycin), counted using Turk’s solution (Merck) and Trypan Blue (Sigma), and aliquotted into U-bottom 96-well plates (2x10⁵ cells/well; 100µL).
Subsequently, 100µL of purified pRBCs or unparasitised red blood cells (uRBCs) (6x10^5 cells/well), 1% Phytohaemagglutinin (PHA; Gibco) or media only was added, and PBMC were cultured for 72hrs at 37°C, 5% CO₂.

Detection of cytokines/chemokines by Cytometric Bead Array (CBA) and ELISA. After 72hrs, concentrations of IFN-γ, IL-10, IL-1β, IL-6, IP-10, TNF, MIP-1α, and MIP-1β were measured in culture supernatants using CBA Flex Sets (BD Biosciences). Samples were analysed using an LSR II flow-cytometer and initial data analysis was performed using BD FCAPArray Software. MCP-2 was detected by sandwich ELISA using anti-human MCP-2 antibody (MAB281) and anti-human MCP-2 biotinylated antibody (BAF281) (R&D Systems). To determine agonist-specific cytokine induction, background levels from medium alone were subtracted.

Identification of cellular sources of cytokines/chemokines by flow cytometry. PBMCs were stimulated with pRBCs or uRBCs for 12 or 24hrs at 37°C in 5% CO₂. For the final 8hrs of incubation, brefeldin A (10µg/ml; Sigma) and GolgiStop (2µM; BD Biosciences) were added. Cells were incubated for 10min on ice with PBS containing 10mM glucose and 3mM EDTA to detach adherent cells. PBMCs were subsequently Fc-blocked with human IgG (10µg/ml; Sigma) and surface stained in PBS containing 0.5% BSA and 2mM EDTA on ice for 30min with phycoerythrin-Cy7 (PE-Cy7)-conjugated anti-CD56 (clone B159), PerCP Cy5.5-conjugated anti-CD4 (clone RPA-T4), allophycocyanin-Cy7 (APC-Cy7)-conjugated anti-CD14 (clone MΦP9), Fluorescein isothiocyanate (FITC)-conjugated anti-γδTCR (clone 11F2) (all from BD Biosciences), Brilliant Violet 570 conjugated anti-CD16 (clone 3G8; Biolegend) and Qdot 605-conjugated anti-CD8 (clone 3B5; Invitrogen). Aqua live/dead amine reactive dye (Invitrogen) was used for dead cell exclusion. Cells were fixed in 2%
paraformaldehyde and permeabilized using Perm Buffer 2 (BD Biosciences). Intracellular staining with PE-Texas Red, (ECD)-conjugated anti-CD3 (clone UCHT1; Beckman Coulter), Alexa700-conjugated anti-TNFα (clone MAb11; BD Biosciences), Allophycocyanin (APC)-conjugated IFNγ (clone B27; BD Biosciences), PE-conjugated anti-IP-10 (clone 6D4/D6/G2; BD Biosciences), Brilliant Violet 421-conjugated anti-IL-10 (clone JES3-9D7; Biolegend), PE-conjugated anti-MIP1α (clone 93342; R&D Systems) and APC-conjugated anti-MIP1β (clone 24006; R&D Systems) was performed on ice for 1hr. Samples were analyzed on a four-laser Fortessa flow cytometer. The gating strategy used to identify the different cell populations is provided in Supplementary Figure 1. Data analysis was performed using FlowJo software (TreeStar). Positive populations were determined by a combination of fluorescence minus one (FMOs) and isotype controls. Positive responses were determined based on comparison to background cytokine and chemokine levels in cells incubated with uRBCs. Responding individuals were defined as having a frequency of cytokine or chemokine positive cells ≥ 0.02% for CD4+ T cells, CD8+ T cells, NK cells and γδ T cells and ≥ 1% for CD14+ cells following background subtraction or had a frequency of responding cells twice above the background.

Statistical analysis. Statistical analyses were performed using STATA v.9. Associations between categorical variables were assessed using chi-squared tests. Mann-Whitney and Kruskal-Wallis tests were performed for comparisons of two and three medians, respectively. Spearman rank correlations were calculated for associations between cytokine responses. Multinomial logistic regression analysis was used to determine odds ratios associated with unit increase in cytokine/chemokine response to pRBC, with and without adjustment for potential confounders. The association between cytokine/chemokine responses and BCS was assessed by non-parametric test for trend.
RESULTS

Characteristics of study participants. The epidemiology, population characteristics, and incidences of *P. falciparum* and *P. vivax* infections and disease in this severe malaria case-control study are reported elsewhere [27]. Demographic features and malarialometric indices at enrolment for the 162 HC, 153 UM, and 200 SM cases included in this immunological sub-study are shown in Supplementary Table 1. Neither age in months (p=0.79) nor sex (p=0.45) differed significantly between the case-control groups in this sub-study. A significant difference was observed between frequency distribution of ethnic groups (p=0.045). All individuals with severe or uncomplicated malaria included in this immunological sub-study were positive by rapid diagnostic test and either light microscopy or PCR at enrolment. By light microscopy, 35.4% of HC controls, 87.6% of UM and 98.5% of SM groups were positive for *P. falciparum, P. vivax* (p<0.001), or both species. The residual 12.4% and 1.5% of individuals in the UM and SM groups respectively were assigned based on PCR positivity with appropriate clinical characteristics and responsiveness to antimalarials. At enrolment, median haemoglobin levels were significantly different between the three groups (p<0.0001) with markedly lower levels in the SM group (Supplementary Table 1).

At PBMC collection, 48% of UM and 35.9% of SM groups were positive for *P. falciparum, P. vivax*, or both (Supplementary Table 1). Median haemoglobin levels were significantly different between groups (p<0.0001) (Supplementary Table 1).
Clinical features of severe malaria. Supplementary Table 2 provides a summary of clinical indices recorded for SM cases. Of those with severe malaria, 11.5% presented with respiratory distress, 10% with deep coma (BCS ≤2), 32% with impaired consciousness (BCS ≤4), 22.5% with severe anaemia (haemoglobin <50 g/L), 19.1% with hyperlactataemia (blood lactate >5 mmol/L), and 10.7% with metabolic acidosis (plasma bicarbonate <12.2 mmol/L).

Associations between severe malaria and P. falciparum induced cytokine responses.
To determine whether P. falciparum-induced production of cytokines and chemokines by PBMCs is associated with malarial disease severity in PNG children, PBMCs from the HC, UM and SM cases were co-cultured with pRBC at a ratio of 1:3, for 72 hours. This time point was chosen to maximize the elicitation outputs of innate immune response pathways while minimizing the relative contribution of acquired immune responses [6, 11]. Additionally, PBMC samples were cultured with PHA to assess cell viability, and media to determine background cytokine production. Concentrations of cytokines and chemokines in cell culture supernatants were measured via FACS-based CBA or capture ELISA.

Cytokine and chemokine responses to pRBC and PHA are shown in Figures 1 and 2, respectively. Compared with UM and HC, SM cases had significantly higher IL-10, IP-10, MIP-1β and MCP-2 responses to pRBC (p≤0.035) (Figure 1). Median TNF (p=0.0003) and MIP-1α (p=0.0013) responses to pRBC in the SM group were significantly higher than the UM group (Figure 1). Compared with UM and HC, SM cases had significantly higher IL-1β, IL-6 and MIP-1α responses to PHA (p≤0.027) (Figure 2). Median MIP-1β levels were significantly higher in the SM than HC group (p=0.032) and MCP-2 levels were significantly higher in the SM compared with the UM group (p=0.0066) (Figure 2).
Multinomial logistic regression analysis was performed to investigate associations between severe malaria and unit increases (100pg/ml for IL-10 and 1000pg/ml for all others) in cytokines or chemokines produced (Table 1). Parasite-elicited IL-10, IL-6, MIP-1α, MIP-1β, and MCP-2 was associated with increased odds of severe malaria (OR 1.01-5.74, p≤0.04). Adjusting for the covariates age, sex, ethnicity, and parasite positivity (any species) at the time of PBMC sampling did not alter the magnitude of the associations between cytokine responses and odds of severe malaria (Table 1).

Associations between cytokine/chemokine responses to P. falciparum and severe malaria syndromes. Severe malaria is associated with diverse but overlapping syndromes, including severe anaemia, respiratory distress, coma, hyperlactataemia and metabolic acidosis. We investigated associations between various severe malaria clinical syndromes and individual cytokine and chemokine responses to pRBC, using UM controls as the comparator (Table 2). SM cases with respiratory distress (n=23) had significantly higher IL-6 and MIP-1α responses to pRBC compared with UM controls (p≤0.032). SM cases with severe anaemia (n=45) had significantly higher TNF (p=0.048) and MCP-2 (p=0.0049) responses; those with deep coma (n=20) had higher IFN-γ, IP-10, TNF, MIP-1, MIP-1β, and MCP-2 responses to pRBC (p≤0.022, Table 2). SM cases with metabolic acidosis (n=21) had higher IL-10, MIP-1β, and MCP-2 (p≤0.034, Table 2), and those with hyperlactataemia (n=38) had higher IL-10, IL-6, TNF, MIP-1α, MIP-1β, and MCP-2 responses (p≤0.046, Table 2). Additionally, associations between BCS and cytokine and chemokine responses to pRBC were assessed. The BCS of uncomplicated malaria controls (BCS=5), and severe malaria cases (BCS=0 to 5) was significantly negatively associated with TNF (p=0.008) and MIP-1α responses (p=0.038)
(Figure 3), suggesting a relationship between coma scores and elevated production of these factors. No other cytokine/chemokine responses were significantly associated with BCS.

Cellular sources of cytokines and chemokines. PBMCs from the top 32 responders for IP-10, TNF, IFN-γ, MIP-1α, MIP-1β and IL-10 were applied into short-term elicitation assays with pRBCs and uRBCs to determine the cellular sources of these cytokines and chemokines. γδ T cells were the major source of IFN-γ in 27/32 donors tested, with a contribution by CD4⁺ T cells in 13/32 donors tested (Figure 4 and Table 3). γδ T cells were also an important source of TNF (24/32), MIP-1α (23/32) and MIP-1β (28/32). CD14⁺ cells (monocyte/macrophages) were also responsible for production of TNF, MIP1-α and MIP-1β in 26/29, 22/29 and 23/29 donors, respectively (Figure 4 and Table 3). Notably, NK cells were not major sources of TNF and IFN-γ, in agreement with prior studies [6, 11]. In a moderate proportion of donors, NK cells produced MIP-1α and MIP-1β. IL-10 was detected in a number of cell populations, predominantly CD4⁺ T cells. IP-10 from CD14⁺ cells was only detected in one donor individual.

DISCUSSION

PBMC elicitation has recently been shown to predict risk of acute malaria morbidity in longitudinal cohort studies [10, 11], but has not yet been applied to association analysis in relation to severe disease. The low incidence of severe malaria precludes prospective assessment of risk for immunological variables, necessitating case-control designs. Clinical malaria at presentation profoundly changes the cellular composition of the peripheral leukocyte compartment, and induces cellular anergy/hyproresponsiveness [22-26]. These
changes homeostatically renormalize during convalescence [8, 24]. Therefore, we compared cytokine/chemokine production from PBMCs drawn from convalescent children previously diagnosed with either severe or uncomplicated malaria, with healthy community controls. The very low SM case-fatality rates in PNG preclude bias due to fatality. PBMCs from SM individuals had significantly higher IL-10, IP-10, MIP-1β and MCP-2 responses to pRBC compared with the UM and HC individuals, and significantly higher TNF and MIP-1α responses compared with UM individuals. Interestingly, with the exception of IL-10, no differences were observed between the HC and UM groups, indicating that recent, uncomplicated malaria infection and treatment does not bias PBMC-derived innate cytokine/chemokine production. This comparability between UM and HC groups suggests the elevated cytokine/chemokine responses observed in the SM group do not simply reflect recent malaria exposure and treatment, but rather reflects an intrinsic immunological responsiveness associated with susceptibility to SM.

Increased production of IL-6, IL-10, MIP-1α, MIP-1β and MCP-2 was associated with severe malaria compared to either or both of the control groups. Excessive production of pro-inflammatory cytokines may contribute to disease in a number of ways, as reviewed [1-3]. Chemokines may contribute to severe disease by recruiting leukocytes to sites of parasite sequestration. Chemokines MIP-1α and MIP-1β may contribute to inflammation by inducing macrophage proliferation and stimulating the secretion of TNF, IL-6 and IL-1α. To date, there are few studies that have addressed the role of chemokines in severe human malaria. High serum MIP-1α and MIP-1β have been described in acute P. falciparum malaria [16], and IP-10 is associated with an increased risk of cerebral malaria mortality [33, 34]. However, measuring serum chemokines levels may be subject to similar caveats identified
for cytokines. Therefore, a novel finding of this study is the association between SM and high PBMC-derived chemokine responses, providing support for a direct role for these mediators in pathogenesis.

We show here the predominant cell populations producing cytokines and chemokines associated with severe malaria are CD14+ and γδ T cells. A role for CD14+ cells in the pathogenesis of severe malaria is consistent with observations of placental monocyte infiltration during malaria in pregnancy, and placental plasma concentrations of chemokines such as MIP-1α associated with this condition [35]. Monocyte infiltrates are also reported from a proportion of brain autopsies from fatal cerebral malaria cases.

In peripheral blood, γδ T cells express typical surface markers associated with conventional T cells, and can display memory-like features including prolonged recall responses upon reinfection [36-39]. This study demonstrates that γδ T cells are the dominant source of MIP-1α and MIP-1β associated with SM. The functionally diverse nature of γδ T cells and their specificity for restricted TCR ligands suggest this population may be an attractive target for preventive vaccination i.e. inducing a functional bias in γδ T cell cytokine/chemokine output by vaccination with conserved malarial ligands may protect against severe disease. γδ T cells have been explored as immunotherapeutic targets in cancer settings with varying success (reviewed in [40]).

In conclusion, these findings have significant implications for understanding susceptibility to severe malarial disease and the development of possible vaccination for preventing severe malaria. The association between elevated cytokine/chemokine production by innate immune
cells and risk of developing severe malaria suggest that intrinsic differences in an individual’s immunological responsiveness can influence susceptibility to severe disease, and are consistent with a role for monocyte activation and recruitment in severe malaria. Further studies may determine if this differential susceptibility is genetically linked and whether modulating γδ T cells by prior exposure to their conserved antigenic targets can prevent severe disease.

NOTES:

Financial Support: This work was supported by a National Health and Medical Research Council (NHMRC) training award (FJIF), NHMRC scholarship (LM), NHMRC Practitioner Fellowship (TMED), Project Grants #516735, #513782 and Program Grant #637406. LS was supported by an International Research Scholarship of the Howard Hughes Medical Institute. LM was supported by a Basser Scholarship from the Royal Australasian College of Physicians. ML was supported by Fogarty Foundation Scholarship. The authors acknowledge support from the Malaria Genomic Epidemiology Network (MalariaGEN).

Acknowledgements: The authors gratefully acknowledge the participation of the study volunteers and their families, the assistance of staff on the pediatric ward of Modilon Hospital and the Papua New Guinea Institute of Medical Research Staff at Modilon Hospital and the Yagaum Campus. We would also like to thank Mr Jack Taraika for assistance with sample processing and Dr Enmoore Lin for assistance with PCR.
Potential conflicts of Interest: All authors: No reported conflicts. All authors have submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest. Conflicts that the editors consider relevant to the content of the manuscript have been disclosed.

Correspondence and re-print requests: Prof. L. Schofield, Division of Infection and Immunity, Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, Victoria, 3050, Australia. E: schofield@wehi.edu.au; P: 61-3-9345-2474; F: 61-3-9347-0852.

Current affiliations: DI Stanisic: Institute for Glycomics, Griffith University, Southport, Australia; A Rosanas-Urgell: Institute of Tropical Medicine, Antwerp, Belgium. Presented in part: 4th Molecular Approaches to Malaria Meeting 2012, Lorne, Australia and 15th International Congress of Immunology 2013, Milan, Italy.
REFERENCES

FIGURE LEGENDS

FIGURE 1: *P. falciparum*-elicited cytokine and chemokine responses in samples from health community controls and convalescent samples from individuals with uncomplicated malaria or severe malaria. Peripheral blood mononuclear cells were stimulated with *P. falciparum* parasitised red blood cells. Cytokine/chemokine measurements (pg/ml) were log10 transformed after adding 1 to the original concentration value. Horizontal lines represent medians; boxes represent 25th and 75th percentiles; whiskers represent the 5th and 95th percentiles. Statistically significant differences (p ≤ 0.05) are indicated. P values were calculated by Mann-Whitney test. HC, healthy community controls; IFN, interferon; IL, interleukin; IP, interferon gamma-induced protein; MIP, macrophage inflammatory protein; MCP, monocyte chemoattractant protein; SM, severe malaria TNF, tumour necrosis factor; UM, uncomplicated malaria.

FIGURE 2: Phytohaemagglutinin-elicited cytokine and chemokine responses in samples from health community controls and convalescent samples from individuals with uncomplicated malaria or severe malaria. Peripheral blood mononuclear cells were stimulated with phytohaemagglutinin. Cytokine/chemokine measurements (pg/ml) were log10 transformed after adding 1 to the original concentration value. Horizontal lines represent medians; boxes represent 25th and 75th percentiles; whiskers represent the 5th and 95th percentiles. Statistically significant differences (p ≤ 0.05) are indicated. P values were calculated by Mann-Whitney test. HC, healthy community controls; IFN, interferon; IL, interleukin; IP, interferon gamma-induced protein; MIP, macrophage inflammatory protein; MCP, monocyte chemoattractant protein; SM, severe malaria TNF, tumour necrosis factor; UM, uncomplicated malaria.
FIGURE 3: Association between BCS and *P. falciparum*-elicited TNF and MIP-1α responses in convalescent samples from individuals with severe or uncomplicated malaria. Children with severe malaria were assigned a BCS from 0-5 and children with uncomplicated malaria were assigned a BCS of 5. For BCS 0: n=4; BCS 1: n=3; BCS 2: n=13; BCS 3: n=15; BCS 4: n=29; BCS 5: n=290. Symbols: median; Error bars: 25th and 75th percentiles. P values were calculated using a nonparametric test for trend. MIP: macrophage inflammatory protein; TNF: tumour necrosis factor.

FIGURE 4: Cellular Sources of *P. falciparum*-elicited cytokines and chemokines in convalescent samples from individuals with severe malaria. Peripheral blood mononuclear cells from the top 32 responders for MIP-1α, MIP-1β, TNF, IFN-γ, IL-10 and IP-10 were stimulated with *P. falciparum* parasitised red blood cells to determine the cellular source of these cytokines/chemokines. Numbers indicate the number of responders/total samples tested where a responding individual was defined as having a frequency of cytokine or chemokine positive cells ≥ 0.02% for CD4+ T cells, CD8+ T cells, NK cells and γδ T cells and ≥ 1% for CD14+ cells following background subtraction or had a frequency of responding cells twice above the background. IFN, interferon; IL, interleukin; IP, interferon gamma-induced protein; MIP, macrophage inflammatory protein; NK cells, natural killer cells; TNF, tumour necrosis factor; γδ, gamma delta T cells.
IFN-γ

IL-6

IL-10

IL-1β

TNF

IP-10

MIP-1α

MIP-1β

MCP-2
Table 1. Multinomial logistic regression analysis of cytokine/chemokine responses to *P. falciparum* infected red blood cells.

<table>
<thead>
<tr>
<th>Cytokine/Chemokine</th>
<th>Healthy controls as base outcome</th>
<th>Uncomplicated malaria as base outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Odds of Severe malaria</td>
<td>Odds of Severe malaria</td>
</tr>
<tr>
<td></td>
<td>OR(^{a}) 95% CI (P)</td>
<td>OR(^{a}) 95% CI (P)</td>
</tr>
<tr>
<td>IFN-(\gamma)</td>
<td>0.90 [0.78, 1.03] 0.13</td>
<td>0.97 [0.83, 1.14] 0.71</td>
</tr>
<tr>
<td>IL-10</td>
<td>5.68 [2.31, 13.98] <0.001</td>
<td>2.42 [1.10, 5.35] 0.029</td>
</tr>
<tr>
<td>IL-1(\beta)</td>
<td>8.30 [0.63, 109.75] 0.11</td>
<td>0.84 [0.089, 7.89] 0.88</td>
</tr>
<tr>
<td>IL-6</td>
<td>1.32 [1.07, 1.63] 0.009</td>
<td>1.003 [0.85, 1.19] 0.97</td>
</tr>
<tr>
<td>IP-10</td>
<td>1.40 [0.94, 2.09] 0.096</td>
<td>1.07 [0.79, 1.45] 0.68</td>
</tr>
<tr>
<td>TNF</td>
<td>1.69 [0.089, 32.1] 0.73</td>
<td>3.33 [0.13, 88.6] 0.47</td>
</tr>
<tr>
<td>MIP-1(\alpha)</td>
<td>1.41 [0.95, 2.10] 0.092</td>
<td>1.77 [1.15, 2.72] 0.009</td>
</tr>
<tr>
<td>MIP-1(\beta)</td>
<td>1.08 [0.99, 1.17] 0.094</td>
<td>1.10 [1.004, 1.21] 0.04</td>
</tr>
<tr>
<td>MCP-2</td>
<td>1.11 [1.00, 1.24] 0.056</td>
<td>1.28 [1.11, 1.47] 0.001</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cytokine/Chemokine</th>
<th>Healthy controls as base outcome</th>
<th>Uncomplicated malaria as base outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>aOR(^{b}) 95% CI (P)</td>
<td>aOR(^{b}) 95% CI (P)</td>
</tr>
<tr>
<td>IFN-(\gamma)</td>
<td>0.89 [0.77, 1.03] 0.12</td>
<td>0.96 [0.81, 1.12] 0.57</td>
</tr>
<tr>
<td>IL-10</td>
<td>5.59 [2.25, 13.89] <0.001</td>
<td>2.31 [1.08, 5.17] 0.043</td>
</tr>
<tr>
<td>IL-1(\beta)</td>
<td>11.71 [0.84, 163.19] 0.067</td>
<td>1.01 [0.10, 9.97] 0.99</td>
</tr>
<tr>
<td>IL-6</td>
<td>1.33 [1.08, 1.65] 0.008</td>
<td>1.03 [0.87, 1.23] 0.72</td>
</tr>
<tr>
<td>IP-10</td>
<td>1.38 [0.92, 2.07] 0.12</td>
<td>1.05 [0.76, 1.44] 0.78</td>
</tr>
<tr>
<td>TNF</td>
<td>1.59 [0.081, 31.16] 0.76</td>
<td>2.99 [0.11, 78.27] 0.51</td>
</tr>
<tr>
<td>MIP-1(\alpha)</td>
<td>1.42 [0.95, 2.32] 0.09</td>
<td>1.86 [1.20, 2.91] 0.006</td>
</tr>
<tr>
<td>MIP-1(\beta)</td>
<td>1.08 [0.99, 1.18] 0.09</td>
<td>1.10 [1.00, 1.21] 0.04</td>
</tr>
<tr>
<td>MCP-2</td>
<td>1.10 [0.99, 1.23] 0.086</td>
<td>1.29 [1.11, 1.49] 0.001</td>
</tr>
</tbody>
</table>

Abbreviations: IFN, interferon; IL, interleukin; IP, interferon gamma-induced protein; MIP, macrophage inflammatory protein; MCP, monocyte chemoattractant protein; OR, Odds Ratio; pRBC, *P. falciparum* infected red blood cell; TNF, tumour necrosis factor.
a Odds ratios (per 1000 pg/ml increase in cytokine response to pRBC) were calculated using multinomial logistic regression. For IL-10, this was calculated per 100 pg/ml increase in cytokine response to pRBC.

b Adjusted Odds ratios (per 1000 pg/ml increase in cytokine response to pRBC) were calculated using multinomial logistic regression, adjusting for age, sex, province of parents’ birth (ethnicity), and parasite positivity at the time of PBMC sampling. For IL-10, this was calculated per 100 pg/ml increase in cytokine response to pRBC.
Table 2. *P. falciparum* infected red blood cell-elicited cytokine and chemokine responses according to severe malaria syndromes.

<table>
<thead>
<tr>
<th>Cytokine/Chemokine</th>
<th>Uncomplicated Malaria</th>
<th>Respiratory Distress</th>
<th>Severe Anaemia</th>
<th>Severe Deep Coma</th>
<th>Metabolic Acidosis</th>
<th>Hyperlactataemia</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n Value</td>
<td>n Value</td>
<td>n Value</td>
<td>n Value</td>
<td>n Value</td>
<td>n Value</td>
</tr>
<tr>
<td>IL-1β</td>
<td>5.05 [5,100]</td>
<td>27.2 [13,4,113]</td>
<td>35.6 [5,48,75,9]</td>
<td>29.7 [4,77,59,8]</td>
<td>46.6 [5,48,108]</td>
<td>66.5 [10,2,121]</td>
</tr>
<tr>
<td>TNF</td>
<td>23.2 [8,11,43,2]</td>
<td>38.2 [21,3,52,5]</td>
<td>30.9 [17,2,43,8]</td>
<td>54.4 [37,9,71,3]</td>
<td>35.8 [20,6,62,2]</td>
<td>40.1 [20,0,69,0]</td>
</tr>
</tbody>
</table>

Note: Values are presented as median [interquartile range].
Data are presented as median [interquartile range] and represent comparisons between individuals with uncomplicated malaria and individuals with different severe malaria syndromes.

Abbreviations: IFN, interferon; IL, interleukin; IP, interferon gamma-induced protein; MIP, macrophage inflammatory protein; MCP, monocyte chemoattractant protein; TNF, tumour necrosis factor.

*aP values are the result of Mann Whitney tests.
Table 3. Frequency of cytokine and chemokine responding cells to *P. falciparum* infected red blood cells.

<table>
<thead>
<tr>
<th>Cytokine/Chemokine</th>
<th>CD4⁺ T cells</th>
<th>CD8⁺ T cells</th>
<th>γδ T cells</th>
<th>CD14⁺ T cells</th>
<th>NK cells</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n¹ Frequency</td>
<td>n Frequency</td>
<td>n Frequency</td>
<td>n Frequency</td>
<td>n Frequency</td>
</tr>
<tr>
<td>IFN-γ</td>
<td>13 0.02-0.3</td>
<td>2 0.08-0.4</td>
<td>27 0.1-2.4</td>
<td>0 ND</td>
<td>5 0.05-1.3</td>
</tr>
<tr>
<td>TNF</td>
<td>0 ND</td>
<td>1 0.1</td>
<td>24 0.12-1.2</td>
<td>26 1.95-29.7</td>
<td>0 ND</td>
</tr>
<tr>
<td>IL-10</td>
<td>7 0.05-0.8</td>
<td>2 0.09-0.3</td>
<td>0 ND</td>
<td>2 1.0-2.9</td>
<td>2 0.7-1.1</td>
</tr>
<tr>
<td>MIP-1α</td>
<td>0 ND</td>
<td>1 0.3</td>
<td>23 0.4-3.9</td>
<td>22 6.0-60.9</td>
<td>6 0.9-2.0</td>
</tr>
<tr>
<td>MIP-1β</td>
<td>0 ND</td>
<td>3 1.65-5.9</td>
<td>28 0.3-5.7</td>
<td>23 8.0-64.6</td>
<td>10 2.0-14.8</td>
</tr>
<tr>
<td>IP-10</td>
<td>0 ND</td>
<td>0 ND</td>
<td>0 ND</td>
<td>1 1</td>
<td>0 ND</td>
</tr>
</tbody>
</table>

Data are presented as minimum-maximum frequency (%) of each cell population in responding individuals.

Abbreviations: IFN, interferon; IL, interleukin; IP, interferon gamma-induced protein; MIP, macrophage inflammatory protein; MCP, monocyte chemoattractant protein; ND, not detected; TNF, tumour necrosis factor.
\(n = \) Number of Responders. Responding individuals were defined as having a frequency of cytokine or chemokine positive cells \(\geq 0.02\% \) for CD4\(^+\) T cells, CD8\(^+\) T cells, NK cells and \(\gamma\delta \) T cells and \(\geq 1\% \) for CD14\(^+\) cells following background subtraction or had a frequency of responding cells twice above the background.