Intervention target populations and effects

Table 1: Intervention target populations and effects

Target populations and effects				
Intervention	Target population	Effects	Source / Effect sizes	
Cash transfers (unconditional)	Children below the poverty line	Reduces the incidence of SAM Reduces the incidence of MAM	RRR = 0.32 (0.16-0.61) for SAM incidence RRR = 0.40 (0.23-0.68) for MAM incidence [Langendorf et al. 2014, PLoS Med [1], Niger study comparing super cereal plus + cash (US\$52 per month) compared to super cereal plus.]	
Delayed umbilical cord clamping	Pregnant women (at birth, but impact is for children <1 month)	Reduces anaemia	RRR = 0.53 (0.40-0.70) for being anaemic [Hutton and Hassan, 2007 Jama [2]]	
	Home/community pr	omotion for children		
	0-23 months:			
	For children < 1	Increases exclusive	OR = 2.17 (1.84-2.56) for exclusive breastfeeding [Sinha et al. 2017 J Nutr [3] for interventions	
	months	breastfeeding	delivered in home or community settings in low- and middle-income countries]	
	For children < 6	Increases exclusive	OR = 2.48 (1.99-3.09) for exclusive breastfeeding [Sinha et al. 2017 J Nutr [3] for interventions	
Infant and young	months	breastfeeding	delivered in home or community settings in low- and middle-income countries]	
child feeding (IYCF) education	For children 6-23 months	Increases age-appropriate (partial) breastfeeding	OR = 1.82 (1.36-2.45) for age-appropriate breastfeeding; [Sinha et al. 2017 J Nutr [3]]	
	For children 6-23 months	Promotion of appropriate complementary feeding reduces odds of stunting	OR = 0.77 for stunting; [Panjwani et al. 2017 J Nutr [4] food secure population with nutrition education or counselling compared to receiving no intervention]	
		Increases exclusive	OR = 1.50 (1.26-1.78) for exclusive breastfeeding in children < 1 month.	
Immediate initiation	Children < 1 month	breastfeeding	OR = 1.39 (1.11-1.74) for exclusive breastfeeding in children 1-6 months [Boundy et al. 2016,	
of breastfeeding		Reduces deaths due to	Pediatrics[5]]	
		prematurity	RRR = 0.49 (0.29-0.82) for mortality due to prematurity [Lawn et al. 2010, I J Emi 2010[6]]	
Lipid-based nutrition	Children 6-23	Reduces the odds of	OR = 0.89 for stunting [Panjwani et al. 2017 J Nutr [4] food insecure with supplementation	
supplements	months old who live	stunting	compared to no supplementation]	

Oral rehydration solution (ORS) + Zinc	in households below the poverty line Children 0-59 months (different quantity by age)	Reduces the incidence of SAM Reduces the incidence of MAM Reduces anaemia Reduces diarrhoea mortality	RRR = 0.915 for SAM and MAM incidence [based on Panjwani et al. 2017 J Nutr [4] food insecure with supplementation compared to no supplementation] RRR = 0.69 (0.60-0.78) for anaemia [De-Regil et al. 2013 Cochrane review [7], assumed the same as micronutrient powders] RRR = 0.24 (0.15-0.38) for diarrhoea mortality. Calculated as RRR = 0.31 (0.20-0.49) for ORS [Munos, et al. 2010, I J Epi [8]], with additional RRR of 0.77 due to the addition of zinc [Walker & Black 2010, I J Epi [9]]
Public provision of complementary foods	Children 6-23 months old who live in households below the poverty line	Reduces the odds of stunting Reduces the incidence of SAM Reduces the incidence of MAM	OR = 0.89 for stunting [Panjwani et al. 2017 J Nutr [4] food insecure with supplementation compared to no supplementation] RRR = 0.915 for SAM and MAM incidence [based on Panjwani et al. 2017 J Nutr [4] food insecure with supplementation compared to no supplementation]
Treatment of severe acute malnutrition (SAM)	Children experiencing SAM	Increases recovery from episode	OR = 0.78 for wasting among children receiving intervention [Bhutta et al. 2013, Lenters et al. 2013 [10, 11]]. Note that this intervention is defined as treating children until they reach a weight-for-height of three standard deviations below the WHO Child Growth Standards median, at which point their mortality risks are significantly reduced but they are still defined as being wasted (i.e. children who are severely wasted are treated to become only moderately wasted, but wasted nonetheless).
Vitamin A	Children 6-59	Reduces diarrhoea	RRR = 0.85 (0.82-0.87) for diarrhoea incidence [Imdad et al. 2017, Cochrane review [12]]
supplementation	months	incidence mortality	RRR = 0.88 (0.79-0.98) for diarrhoea-specific mortality [Imdad et al. 2017, Cochrane review [12]]
Balanced energy-protein supplementation	Pregnant women below the poverty line	Reduces risk of small for gestational age (SGA) birth outcomes	RRR = 0.79 (0.69-0.90) for SGA birth outcomes [Ota et al. 2015, The Cochrane Library [<u>13</u>]]
Calcium supplementation	Pregnant women	Reduces maternal mortality (hypertensive disorders) Reduces pre-term births	RRR = 0.80 (0.66-0.98) for maternal mortality [Hofmeyr et al. 2018 Cochrane review [<u>14</u>]] RRR = 0.76 (0.60-0.97) for preterm birth [Hofmeyr et al. 2018 Cochrane review [<u>14</u>]]
Iron and folic acid supplementation	Women of reproductive age (pregnant / non-pregnant)	Reduces anaemia Reduces neonatal mortality	RRR = 0.33 (0.16-0.69) for anaemia in pregnant women [Pena-Rosas et al, Cochrane Database Reviews 2015 [<u>15</u>]] RRR = 0.73 (0.56-0.95) for anaemia in non-pregnant women [Fernandez-Gaxiola & De-Regil 2011, Cochrane Database Syst Rev [<u>16</u>]]
Intermittent preventative	Pregnant women in areas where there is malaria risk	Reduces anaemia Reduces SGA birth outcomes	RRR = 0.83 (0.74-0.93) for being anaemic [Radeva-Petrova et al. 2014, The Cochrane Library [<u>17</u>]] RRR = 0.65 (0.55-0.77) for SGA birth outcomes [Eisele et al. 2010, I J Epi [<u>18</u>]]

treatment of malaria during pregnancy			
Multiple micronutrient supplementation	Pregnant women	Reduces anaemia and risk of SGA birth outcomes	RRR = 0.33 (0.16-0.69) for anaemia in pregnant women [Pena-Rosas et al, Cochrane Database Reviews 2015 [15]] RRR = 0.92 (0.88-0.97) for SGA births [Keats et al. 2019 Cochrane Database Reviews [19]]
Iron and folic acid fortification (wheat, maize or rice)	Everyone	Reduces anaemia Reduces neonatal mortality	OR = 0.976 (0.975-0.978) for being anaemic [Barkley et al. 2015, B J Nutrition [20]] RRR = 0.87 (0.84-0.89) of neonatal mortality [prevention of neural tube defects Blencowe et al. 2010, I J Epidemiology [21]]
Iron and iodine fortification of salt	Everyone	Reduces anaemia Reduces neonatal mortality	OR = 0.976 (0.975-0.978) for being anaemic [Barkley et al. 2015, B J Nutrition [20]]
Long-lasting insecticide-treated bed nets	Everyone in areas where there is malaria risk	Reduces anaemia Reduces SGA birth outcomes	RRR = 0.83 (0.74-0.93) for anaemia [Radeva-Petrova et al. 2014, The Cochrane Library [<u>17</u>]] RRR = 0.65 (0.55-0.77) for SGA birth outcomes [Eisele et al. 2010, Int J Epi [<u>18</u>]]

Abbreviations: DHS, Demographic and Health Survey; GDP, gross domestic product; IQR, interquartile range; IYCF, infant and young child feeding; LC, low income country; LiST, Lives Saved Tool; LMC, lower-middle income country; MAM, moderate acute malnutrition; OR, odds ratio; ORS, oral rehydration solution; RRR, relative risk ratio; SGA, small for gestational age; SAM, severe acute malnutrition; SQ-LNS, small quantity lipid nutrient supplement paste; UMC, upper-middle income country; WHO-CHOICE, World Health Organization CHOosing Interventions that are Cost-Effective.

Other model parameters

1. Mortality risk factors

a) <u>Birth outcome</u>s

Table 2: Relative risk ratios for neonatal mortality types by birth outcome (term / pre-term and appropriate for gestational age [AGA] / small for gestational age [SGA])

Birth outcome	Neonatal sepsis	Neonatal pneumonia	Neonatal asphyxia	Neonatal prematurity
Term AGA	Ref	Ref	Ref	Ref
Term SGA	2.07	2.07	2.07	1
Pre-term AGA	8.02	8.02	8.02	999.99
Pre-term SGA	11.54	11.54	11.54	999.99

Source: Katz et al. 2013 [23]

b) <u>Stunting</u>

Table 3: Relative risk ratios for 1-59 month old mortality types, by height-for-age Z-score (HAZ) category

Age group	HAZ-status	Diarrhoea	Pneumonia	Meningitis	Measles	Other
	None (HAZ-score >=-1)	Ref	Ref	Ref	Ref	Ref
1-59	Mild (HAZ-score >= -2 and < -1)	1.67	1.55	1	1	1
months	Moderate (HAZ-score >= -3 and < -2)	2.38	2.18	1.86	2.79	1.86
	Severe (HAZ-score < -3)	6.33	6.39	3.01	6.01	3.01

Source: Olofin et al. 2013 [24]

c) <u>Wasting</u>

Table 4: Relative risk ratios for 1-59 month old mortality types, by weight-for-height Z-score (WHZ) category

Age group	Status	Diarrhoea	Pneumonia	Meningitis	Measles	Other
	None (WHZ-score >= -1)	Ref	Ref	Ref	Ref	Ref
1-59	Mild (WHZ-score >= -2 and < -1)	1.6	1.92	1.65	1	1.65
months	MAM (WHZ-score >= -3 and < -2)	3.41	4.66	2.73	2.58	2.73
	SAM (WHZ-score < -3)	12.33	9.68	11.21	9.63	11.21

Source: Olofin et al. 2013 [24]

d) Breastfeeding practices

Age group	Status	Neonatal diarrhoea / sepsis / pneumonia*	Diarrhoea†	Pneumonia^	Meningitis / measles / pertussis^
	Exclusive	Ref			
<1 month	Predominant	1.35			
<1 month	Partial	1.35			
	None	5.40			
	Exclusive		Ref	Ref	
1 E maantha	Predominant		2.28	1.66	1.48
1-5 months	Partial		4.62	2.50	2.84
	None		10.53	14.97	14.40
C 11 m on the	Partial		Ref	Ref	Ref
6-11 months	None		1.47	1.92	3.69
12.22 months	Partial		Ref	Ref	Ref
12-23 months	None		2.57	1.92	3.69

Table 5: Relative risk ratios for mortality types, by breastfeeding practices and age group

Sources: * NEOVITA Study Group 2016 [25] with predominant / partial assuming late initiation; † Lamberti et al. 2011 [26]; ^ Lamberti et al. 2013 [27].

e) <u>Anaemia</u>

Table 6: Relative risks of maternal mortality types by anaemia status.

Pregnant women age in years	Status	Antepartum haemorrhage	Intrapartum haemorrhage	Postpartum haemorrhage
15-49	Not anaemic	Ref	Ref	Ref
15-49	anaemic	10.675	10.675	10.675

Source: LiST [22].

Applies only to the fraction who are severely anaemic

2. Birth outcomes

a) Impact of birth outcomes on stunting, wasting and anaemia

Table 7: Odds ratios for stunting (HAZ-score <-2) and wasting (WHZ-score <-2), by birth outcome

	Odds ratio for condition if born:				
Condition	Term AGA	Term SGA	Pre-term AGA	Pre-term SGA	
Stunting	Ref	5	6.4	46.5	
Wasting	Ref	2.52	1.96	4.19	

Sources: stunting LiST [22]; wasting Christian et al. 2013 [28] for low and middle income countries.

b) Odds of birth outcomes with maternal anaemia

Table 8: Odds ratios for being born term / pre-term and appropriate for gestational age[AGA] / small for gestational age [SGA] if mother is anaemic

Condition	Term SGA^	Pre-term AGA ⁺	Pre-term SGA [^]
No maternal anaemia	Ref	Ref	Ref
Maternal anaemia	1.53	1.32	1.53

Sources: ^ Child Health Epidemiology Reference Group 2011 [29]; † Xiong et al. 2015 [30].

3. Impact of diarrhoea on stunting, wasting and anaemia

Table 9: Odds ratios for stunting, wasting and anaemia as diarrhoea incidence increases.

Condition	Age band	Odds ratio for every additional episode	Source
Stunting	0-59 months	1.025	LiST [<u>22]</u>
Wasting	0-59 months	1.025	Assumed the same as stunting

4. Impact of past stunting on stunting

Table 10: Odds ratios for continued stunting (<-2 HAZ-score) if stunted in a prior age band

Age in months	Odds Ratio
1-5	45
6-11	361.6
12-23	174.7
24-59	174.7

Source: LiST [22].

References

1. Langendorf C, Roederer T, de Pee S, Brown D, Doyon S, Mamaty A-A, Touré LW-M, Manzo ML, Grais RF: Preventing acute malnutrition among young children in crises: a prospective intervention study in Niger. *PLoS medicine* 2014, 11(9):e1001714.

2. Hutton EK, Hassan ES: Late vs early clamping of the umbilical cord in full-term neonates: systematic review and meta-analysis of controlled trials. *Jama* 2007, 297(11):1241-1252.

3. Sinha B, Chowdhury R, Upadhyay RP, Taneja S, Martines J, Bahl R, Sankar MJ: Integrated interventions delivered in health systems, home, and community have the highest impact on breastfeeding outcomes in low-and middle-income countries. *The Journal of nutrition* 2017, 147(11):2179S-2187S.

4. Panjwani A, Heidkamp R: Complementary feeding interventions have a small but significant impact on linear and ponderal growth of children in low-and middle-income countries: a systematic review and meta-analysis. *The Journal of nutrition* 2017, 147(11):2169S-2178S.

5. Boundy EO, Dastjerdi R, Spiegelman D, Fawzi WW, Missmer SA, Lieberman E, Kajeepeta S, Wall S, Chan GJ: Kangaroo mother care and neonatal outcomes: a meta-analysis. *Pediatrics* 2016, 137(1):e20152238.

6. Lawn JE, Mwansa-Kambafwile J, Horta BL, Barros FC, Cousens S: 'Kangaroo mother care'to prevent neonatal deaths due to preterm birth complications. *International journal of epidemiology* 2010, 39(suppl_1):i144-i154.

7. De-Regil LM, Suchdev PS, Vist GE, Walleser S, Peña-Rosas JP: Home fortification of foods with multiple micronutrient powders for health and nutrition in children under two years of age. *Evidence-Based Child Health: A Cochrane Review Journal* 2013, 8(1):112-201.

8. Munos MK, Walker CLF, Black RE: The effect of oral rehydration solution and recommended home fluids on diarrhoea mortality. *International journal of epidemiology* 2010, 39(suppl_1):i75-i87.

9. Walker CLF, Black RE: Zinc for the treatment of diarrhoea: effect on diarrhoea morbidity, mortality and incidence of future episodes. *International journal of epidemiology* 2010, 39(suppl_1):i63-i69.

10. Bhutta ZA, Das JK, Rizvi A, Gaffey MF, Walker N, Horton S, Webb P, Lartey A, Black RE, Group TLNIR: Evidence-based interventions for improvement of maternal and child nutrition: what can be done and at what cost? *The Lancet* 2013, 382(9890):452-477.

11. Lenters LM, Wazny K, Webb P, Ahmed T, Bhutta ZA: Treatment of severe and moderate acute malnutrition in low- and middle-income settings: a systematic review, meta-analysis and Delphi process. *BMC Public Health* 2013, 13(Suppl. 3):S23.

12. Imdad A, Mayo-Wilson E, Herzer K, Bhutta ZA: Vitamin A supplementation for preventing morbidity and mortality in children from six months to five years of age. *Cochrane Database of Systematic Reviews* 2017(3).

13. Ota E, Hori H, Mori R, Tobe-Gai R, Farrar D: Antenatal dietary education and supplementation to increase energy and protein intake. *The Cochrane Library* 2015.

14. Hofmeyr GJ, Lawrie TA, Atallah ÁN, Torloni MR: Calcium supplementation during pregnancy for preventing hypertensive disorders and related problems. *Cochrane database of systematic reviews* 2018(10).

15. Peña-Rosas JP, De-Regil LM, Garcia-Casal MN, Dowswell T: Daily oral iron supplementation during pregnancy. *The Cochrane Library* 2015.

16. Fernández-Gaxiola AC, De-Regil LM: Intermittent iron supplementation for reducing anaemia and its associated impairments in menstruating women. *Cochrane Database Syst Rev* 2011, 12.

17. Radeva-Petrova D, Kayentao K, ter Kuile FO, Sinclair D, Garner P: Drugs for preventing malaria in pregnant women in endemic areas: any drug regimen versus placebo or no treatment. *The Cochrane Library* 2014.

18. Eisele TP, Larsen D, Steketee RW: Protective efficacy of interventions for preventing malaria mortality in children in Plasmodium falciparum endemic areas. *International journal of epidemiology* 2010, 39(suppl_1):i88-i101.

19. Keats EC, Haider BA, Tam E, Bhutta ZA: Multiple-micronutrient supplementation for women during pregnancy. *Cochrane Database of Systematic Reviews* 2019(3).

20. Barkley JS, Wheeler KS, Pachón H: Anaemia prevalence may be reduced among countries that fortify flour. *British Journal of Nutrition* 2015, 114(2):265-273.

21. Blencowe H, Cousens S, Modell B, Lawn J: Folic acid to reduce neonatal mortality from neural tube disorders. *International journal of epidemiology* 2010, 39(suppl 1):i110-i121.

22. LiST: Lives Saved Tool (LiST).

23. Katz J, Lee AC, Kozuki N, Lawn JE, Cousens S, Blencowe H, Ezzati M, Bhutta ZA, Marchant T, Willey BA: Mortality risk in preterm and small-for-gestational-age infants in low-income

24. Olofin I, McDonald CM, Ezzati M, Flaxman S, Black RE, Fawzi WW, Caulfield LE, Danaei G, Study NIM: Associations of suboptimal growth with all-cause and cause-specific mortality in children under five years: a pooled analysis of ten prospective studies. PloS one 2013, 8(5):e64636.

25. NEOVITA Study Group: Timing of initiation, patterns of breastfeeding, and infant survival: prospective analysis of pooled data from three randomised trials. The Lancet Global Health 2016, 4(4):e266-e275.

26. Lamberti LM, Walker CLF, Noiman A, Victora C, Black RE: Breastfeeding and the risk for diarrhea morbidity and mortality. BMC public health 2011, 11(3):1.

27. Lamberti LM, Zakarija-Grković I, Walker CLF, Theodoratou E, Nair H, Campbell H, Black RE: Breastfeeding for reducing the risk of pneumonia morbidity and mortality in children under two: a systematic literature review and meta-analysis. BMC public health 2013, 13(3):S18.

28. Christian P, Lee SE, Donahue Angel M, Adair LS, Arifeen SE, Ashorn P, Barros FC, Fall CH, Fawzi WW, Hao W: Risk of childhood undernutrition related to small-for-gestational age and preterm birth in low-and middle-income countries. International journal of epidemiology 2013, 42(5):1340-1355.

29. Child Health Epidemiology Reference Group: Moderate to Severe, but Not Mild, Maternal Anemia Is Associated with Increased Risk of Small-for-Gestational-Age Outcomes–. The Journal of nutrition 2011, 142(2):358-362.

30. Xiong X, Buekens P, Alexander S, Demianczuk N, Wollast E: Anemia during pregnancy and birth outcome: a meta-analysis. American journal of perinatology 2000, 17(03):137-146.