Beeson Group

Malaria Immunity and Vaccines

Burnet marketing feb 2016 high res 077

Overview

Malaria is one of the world’s leading health problems, and particularly affects young children and pregnant women. While substantial progress has been made in reducing the global burden in the past decade, progress has stalled in recent years with a number of major challenges. There is an urgent need for effective vaccines, new drugs to treat the disease, new prevention strategies, and improvements in diagnosis and surveillance. Plasmodium falciparum, causes most clinical cases and deaths globally, however P. vivax also causes a high burden of disease in Asia and Pacific region.

Our research centres on five different approaches:

  • Immunity to malaria in humans
  • Vaccines against malaria
  • Mechanisms of infection
  • Malaria surveillance
  • Clinical and operational research on malaria.

In addition, we apply our research to the Burnet Institute Healthy Mothers, Healthy Babies program in Papua New Guinea, which is a collaborative research program aimed at providing life-saving health care for women and children in PNG.

Latest news:

June 2018

Burnet research opens new malaria vaccine pathway

New research has revealed how antibodies produced by the immune system can recruit blood proteins known as complement to clear malaria to prevent infection. The findings open new strategies for malaria vaccines

March 2018

More R&D needed in maternal and newborn health

Burnet Institute researchers are urging greater R&D to address compelling needs in maternal and newborn health.

January 2018

Vaccine hope as Burnet research unlocks malaria secrets

Burnet research team created a malaria ‘Frankenstein’ to reveal hidden secrets about Plasmodium vivax.

September 2017

New insights into malaria immunity

New research has found that immunity to malaria is be better maintained over time than expected. Some protective immune responses are long lived, and understanding this may be key to developing effective lasting vaccines.

October 2016:

New tests expand malaria vaccine horizons

We developed novel approaches to dissect specific immune responses to malaria. The new findings shed light on how to develop vaccines that will effectively protect against malaria across different regions globally.

September 2016:

Acquired immunity to leading malaria vaccine candidates

We identified specific type of antibodies that were strongly linked with protection from malaria in children. These findings give new insights into the development of effective malaria vaccines, and indicate that further studies are needed to better understand how these antibodies function to block malaria, such as through interactions with complement proteins in the blood.

May 2015:

Discovery of malaria-blocking immune response opens door for vaccine

Findings published in the prestigious international journal, Immunity, revealed the discovery of a key strategy used by the body’s immune system to protect against malaria infection. The discovery shows how antibodies work in partnership with other proteins in the blood, known as complement, in blocking malaria infection, opening the door towards an effective vaccine.

Other News

Objectives

Immunity to malaria in humans

Our aims are to identify the key targets of immunity, understand the mechanisms mediating immunity, and determine how immunity is acquired and maintained, for both P. falciparum and P. vivax). This involves combining detailed studies of immune responses with clinical and population studies of children and pregnant women in Africa, Asia and Papua New Guinea. Studies focus on understanding how antibodies prevent infection, neutralise and clear malaria parasites in the blood, and block malaria transmission. This includes and understanding the importance of interactions with monocytes, macrophages, neutrophils and other immune cells.

Vaccines against malaria

There is a strong need for effective vaccines to help achieve the long-term goal of malaria elimination. Our studies involve identifying and prioritising candidate antigens for vaccine development, determining the optimal formulation and delivery of vaccine antigens, and developing assays to measure vaccine-induced immune responses that can be used in vaccine development and clinical trials. Studies focus on several leading candidate antigens, and also aims to identify and characterise other antigens that could be developed as vaccines. We are also investigating vaccine approaches to induce potent protective immune responses, and evaluate immune responses in vaccine clinical trials.

Mechanisms of infection

Malaria infection commences following a mosquito bite when sporozoites enter the skin, migrate into the bloodstream and ultimately infect the liver. Blocking this initial infection is an important strategy in vaccine development, and we are identifying mechanisms and interactions involved in hepatocyte infection that could be targeted by vaccines. During blood-stage replication of Plasmodium, the merozoite form of the parasite (the form of the malaria parasite that invades red blood cells) infects red blood cells and develops and replicates inside them. This is an essential step in the Plasmodium life-cycle that could be targeted by vaccines and novel drugs. Identifying molecular and cellular interactions involved in invasion of red blood cells by P. falciparum merozoites using novel approaches we have recently developed. We will use this knowledge to complement our research on vaccine development and drug discovery.

Malaria surveillance

Additional tools are required to facilitate the identification of hot-spots of malaria transmission and identify population groups with higher transmission for targeted malaria interventions to accelerate progress in malaria elimination. As we move from malaria control to elimination, accompanied by declining malaria transmission, the prevalence of active infection is greatly reduced, and low-density infections that are not detected by current diagnostic tests become more common. This presents a significant practical and financial challenge to identifying malaria transmission hot-spots and populations with active or recent infection. A further problem is access and resources. Many high-risk populations live in rural and remote locations with limited infrastructure and access. We are investigating surveillance strategies for malaria, including the use of serology to detect recent malaria exposure and community-based strategies for surveillance. We are working on the development and evaluation of simple low-cost rapid surveillance tools for use by field surveillance teams or by community-based health care workers that would facilitate surveillance, estimating malaria burden, and reporting, and enable better planning of interventions and services.

Clinical and operational research on malaria

Our work aims to understand the negative consequences of malaria and determine strategies for prevention, particularly in pregnant women and young children. This will assist with the understanding of how malaria interacts with other health problems, such as anaemia and other infections, to worsen health outcomes in children and pregnant women. In addition, we conduct operational research to provide insights into how health services can be modified or strengthened to improve access and effective treatment and prevention of malaria and other illnesses.

Our group is a member of the Australian Centre for Excellence in Malaria Elimination (ACREME).

Projects