TITLE

SEEK, TEST, TREAT' LESSONS FROM AUSTRALIA: A STUDY OF HIV TESTING PATTERNS FROM A COHORT OF MEN WHO HAVE SEX WITH MEN.

CORRESPONDENCE

Ms Anna Wilkinson
Burnet Institute, Centre for Population Health
85 Commercial Rd
Melbourne VIC 3004
Australia
Email: awilkinson@burnet.edu.au
Phone: +61 3 8506 2393
Fax: +61 3 9282 2100

AUTHORS

Anna Lee Wilkinson, BA Nursing, MPH1,2, Carol El-Hayek, BA Sc, Grad Dip (Genetic counselling) MAE1, Tim Spelman, MBBS BSc Grad Cert (Stats)1,2, Christopher Fairley MBBS, PhD FRACP FAFPHM3,4, David Leslie MBBS FRCPA5, Emma McBryde MBBS FRACP PhD MBiostatistics1,4, Margaret Hellard MBBS FRACP PhD FAFPHM1,2, Mark Stoové BA App Sci Grad Dip (Ed) PhD1,2

AFFILIATIONS

1. Burnet Institute, Victoria, Australia
2. Monash University, Victoria, Australia
3. Melbourne Sexual Health Centre, Victoria, Australia
4. The University of Melbourne, Victoria, Australia
5. Victoria Infectious Disease Reference Laboratory, Victoria, Australia

CONFLICTS OF INTEREST AND SOURCES OF FUNDING

All authors have no conflicts to declare. The Victorian Department of Health funds ongoing surveillance projects within the Burnet Institute. The authors would like to acknowledge the NHMRC who provide funding to Margaret Hellard as a senior research fellow and to Anna Wilkinson as a public health scholarship recipient. Mark Stoové is supported by the NHMRC Centre for Research Excellence in Injecting Drug Use. The authors gratefully acknowledge the contribution to this work of Victorian Operational Infrastructure Support Program received by the Burnet Institute.
ABSTRACT

OBJECTIVE: HIV diagnoses are increasing in Australia, mostly among men who have sex with men (MSM). Similar to many countries, Australia's HIV prevention strategies emphasise a 'seek, test, treat' approach, including enhancing HIV testing frequency. We describe HIV testing among MSM and correlates of returning for testing within 12 months in the context of new HIV prevention paradigms.

METHODS: Testing and behavioural data (2007 to 2013) contributed by MSM aged ≥16 years were included. Total HIV tests by calendar year and repeat tests within 12 months were described, alongside negative binomial regression for trend. A two-level mixed effects logistic regression model examined correlates of testing within 12 months. Median days between HIV tests was compared between MSM diagnosed with HIV and persistently HIV negative MSM.

RESULTS: The study included 46,060 tests from 17,904 MSM. There was an increase in annual tests (p<0.01), repeat tests within 12 months (p<0.01) and the proportion of tests within 12 months of an index test (p<0.01), although only to 53.3% in 2013. Return rates were higher in MSM aged 16-29 years (aOR 1.30, 95% CI: 1.1-1.5) and those reporting higher numbers of partners (aOR 3.5, 95% CI: 3.0-4.0). Median time between tests among MSM diagnosed with HIV (233 days) was greater than for HIV negative MSM (189 days) (p=0.03).

CONCLUSION: Although testing has increased, testing frequency among many MSM remains suboptimal. To optimize 'seek, test, treat' based HIV prevention strategies new approaches to increase testing uptake and early HIV detection among MSM are needed

Keywords: HIV, Men who have sex with men, prevention

INTRODUCTION

Notifications of HIV in Australia have continued to increase since the late 1990s, with the largest increase in the state of Victoria, the second most populous state in Australia. The...
The majority of HIV diagnoses in Australia occur among men who have sex with men (MSM). Increases in HIV diagnoses among MSM have occurred alongside substantial increases in other sexually transmissible infections (STI) including chlamydia, syphilis and gonorrhoea. A similar re-emergence of HIV and other STIs among MSM has been seen in the UK, North America and parts of Europe. To address this, considerable investments made in HIV and STI prevention in Australia over the past decade have increasingly focussed on improving rates of HIV and other STI testing among MSM. These included social marketing campaigns, trials of point-of-care testing models, novel community engagement strategies and revisions to the National HIV Testing Policy. Such initiatives specifically aim to reduce the prevalence of undiagnosed HIV, which is understood to contribute disproportionately to onward HIV transmission. Timely diagnoses of HIV have the potential to interrupt transmission by prompting mitigation of sexual risk and facilitating timely commencement of treatment, with subsequent reductions in community viral load. Effective screening and detection of infections, particularly early infections, is fundamental to ‘seek, test, treat’ HIV prevention strategies.

In Australia, annual HIV and STI testing is recommended for all sexually active MSM and three to six monthly testing is recommended for MSM engaging in high risk sexual practices. There is some evidence of recent local increases in the total number of HIV tests conducted among MSM and self-reported rates of HIV testing among gay men in Australia are high, at approximately 60% for annual testing. However, objective clinic-level data among MSM in Australia has shown sub-optimal HIV testing frequency and there is evidence of pools of MSM who have never tested for HIV. Increased HIV testing has also been reported internationally, with substantial proportions of undiagnosed MSM and persistent HIV incidence and infrequent HIV testing remains a key issue.

Models outlining the potential impact of ‘seek, test, treat’ approaches to HIV prevention emphasise the importance of increasing test frequency among those at highest risk of acquiring HIV and transmitting it to others. UNAIDS has also endorsed ambitious global targets aimed at ensuring 90% of people living with HIV are diagnosed (alongside 90% retained on treatment and 90% achieving viral suppression). To evaluate the potential HIV prevention benefits of strategies...
focussed on enhancing HIV testing and detection it is important to measure HIV testing frequency
(beyond simply recording overall test conducted), alongside trajectories in HIV incidence and
notifications. It is also important to describe the characteristics of those testing more or less frequently
to inform refinements to prevention strategies, including targeted and tailored interventions.

Victoria (the Australian state with the highest per population HIV diagnosis rate) maintains one of the
few HIV surveillance systems internationally that prospectively links individuals’ HIV and STI tests
alongside basic data on sexual risk behaviour at the time of testing. This system provides an
opportunity to monitor HIV testing among MSM, evaluate efforts to enhance HIV testing and detect
changes in HIV incidence among those presenting for testing. We scrutinised HIV testing and
behavioural data from MSM presenting at sentinel surveillance clinics with the aim of describing HIV
testing patterns over time and correlates of returning for testing within 12 months.

METHODS

Setting

The Victorian Primary Care Network for Sentinel Surveillance on blood borne viruses and sexually
transmitted infections (VPCNSS) was established in April 2006 and is managed by the Burnet
Institute (BI). The VPCNSS has been described in detail previously but in brief, it consists of 12
participating primary health care sites and their corresponding laboratories, with four disease
networks: HIV, chlamydia, syphilis and gonorrhoea. The HIV network includes two metropolitan
sexual health centres and two General Practice (GP) clinics specialising in gay men’s health that see a
high caseload of MSM for HIV and STI testing. These HIV network clinical sites have high HIV
coverage in Victoria, accounting for 50% of HIV diagnoses in Victoria between 2007 and 2010.

Data collection

HIV test outcome data from laboratories are uniquely identified and linked to corresponding
responses from a brief surveillance questionnaire self-completed by patients at the time of testing.
One sexual health centre undertaking a relatively small number of HIV tests does not collect
behavioural data and was therefore was excluded from this analysis as MSM status could not be
assigned (n=324 HIV tests). Data collection differs between one metropolitan sexual health centre and the two GP clinic sites.

At the latter, the doctor completes basic demographics, reason for HIV test, presence of symptoms, previous HIV testing history at the clinic, history of injecting drug use, engagement in sex work and, if male, history of sex with another man. The patient then completes the questionnaire items including numbers of recent oral and anal sex partners (categorical), HIV status of regular sex partner, recent condom use with regular and casual sex partners, and locations where patients met sex partners. These questions have a six month recall period. At the one metropolitan sexual health centre; 12 month recall period for number of partners (continuous) and condom use with any anal sex partner (compared to differentiation between oral or anal, casual or regular partner at other sites). HIV status of partner and location of meeting partners was not asked at this sexual health centre.

For the purpose of this analysis, responses were combined into categories of number of partners with the final categories being one male partner in six or twelve months; two to five in six months or two to ten in twelve months; six to ten in six months or 11-20 in twelve months; and more than ten in six months or more than 20 in twelve months. Response categories for condom use for anal sex with any sex partner were the same across all sites (always, usually [>50%], sometimes [<50%] and never). Categories were combined into a binary variable for recent condom use with categories of consistent condom use (always) and inconsistent (sometimes, usually, never) with any anal sex partner. Clinical guidelines\(^\text{19}\) were considered when deriving meaningful categories for variables for number of partners and condom use.

Participants

Data from all HIV tests recorded for sexually active HIV negative MSM aged ≥16 years between 2007 and 2013 were used in this study and participants could have multiple tests. Analysis excluded MSM reporting no male sex partners in the previous six or 12 months as annual testing is not recommended for MSM not sexually active in the previous year\(^\text{19}\). For consistency with recent literature\(^\text{26}\), tests within 30 days of a previous test were considered the same testing episode and therefore excluded. MSM status was assigned by patient or clinician identification on the laboratory
form; questionnaire data on male sexual partners; or screening for rectal STIs alongside HIV testing.

HIV diagnosis was by antibody detection using EIA and follow-up confirmatory Western blot performed at a reference laboratory. Tests performed as part of ongoing non-occupational post exposure prophylaxis follow-up, as indicated by clinicians, were excluded from the analysis (n=359).

Analysis

Individual records were organised as panels, with the outcome of ‘test within 12 months’ as binary and assigned at every record within an individual’s panel of data. Each record (test performed) was considered an index, and ‘test within 12 months’ was assigned ‘yes’ to an index if the subsequent test was <12 months (365 days) of the index test date. For example, if an individual had four HIV tests between May 2012 and June 2013, three months apart, each test would be counted and each test would count as a test within 12 months. Continuing the example, the index tests in 2012 that had subsequent tests within 12 months, but in 2013, were reported as ‘test within 12 months’ for the calendar year 2012.

Total number of HIV tests and number and percentage of tests within 12 months of an index test were described overall and by demographics, sexual risk behaviour, and type of clinic. Returning for testing within 13 months (396 days) and 14 months (426 days) was also examined to assess the sensitivity of the 12 month (365 days) cut off in the descriptive analysis of returning for testing.

To assess trends by calendar year the proportion of tests with a return test was reported. A two sample z-test was used to test for a difference in proportion of tests with a subsequent test within 12 months between 2007 and 2012.

Trends in testing and returning for testing were examined using a negative binomial regression. The outcome variable (tests) was count data, and found to be over-dispersed; therefore negative binomial approach was used to assess trends. A likelihood ratio test was used to confirm the negative binomial regression as returning the better fit of the observed data compared with a Poisson regression.

Logistic regression was used to analyse predictors of returning for testing as a binary event variable. A mixed effect multi-level model was used to assess predictors of returning for testing within 12
months where demographics, sexual risk behaviour and type of clinic attended were included as fixed
effects and participant’s unique record identifier was incorporated as a random effect. Our mixed
effects regression was modelled over two levels with repeated tests (level one) contributed by MSM
(level two) over time. The two-level model was chosen to account for the unobserved confounding
within MSM, such as an established testing pattern any individual may have. The final logistic
regression model included adjustment for all variables and was selected with consideration of
information criteria alongside the clinical and public health applicability of the model, which provided
estimates of individual level predictors of returning that could be used to identify subpopulations of
MSM who did not return for testing. Of those MSM diagnosed with HIV with a testing history in the VPCNSS, time between tests was
calculated in days and reported as a median. Wilcoxon rank-sum test was used to test for a difference
in time between tests for HIV positive MSM and persistently negative MSM. For all analysis p<0.05
was considered statistically significant and analysis was conducted using Stata®, Release 13.

RESULTS

Description of HIV testing

A total of 46,060 HIV tests from 17,904 sexually active MSM between 2007 and 2013 were included
in the analyses. The total number of tests increased by more than 100% over the follow up period,
from 4,431 in 2007 to 9,336 in 2013 (p<0.01). There was no increase in the median number of annual
tests per individuals (p=0.65) (Table 1). A description of HIV testing and returning for testing by
demographic characteristics and sexual risk behaviour is available as online supplemental data (see
Table S1, http://links.lww.com/QAI/A665).

Returning for repeat HIV testing

Almost half (46.4%) of all HIV tests between 2007 and 2012 were accompanied by a subsequent test
at the same clinic within 12 months. The number and proportion of tests performed within 12 months
of an index test increased annually between 2007 and 2012 (p<0.01). This represents an increase of
115% in the number of return tests, but only an 8.5% increase in the proportion of tests with a return
test within 12 months (Table 1). Assessment of the sensitivity of the 12 month cut-off showed similar proportions of MSM returning for testing when using 13 and 14 months as a cut-off (data not shown).

We observed higher rates of return tests within 12 months among younger MSM (AOR 1.30, 95% CI: 1.1-1.5) and MSM born in a country other than Australia (AOR 1.1 95% CI: 1.0-1.2). Compared with MSM reporting one male partner, higher number of partners cumulatively increased the odds of returning for testing, with the strongest association found for those reporting >10 partners in six months or >20 partners in 12 months (AOR 3.5, 95% CI: 3.0-4.0) (Table 2).

HIV testing prior to testing positive

There were 455 new positive HIV tests at the participating clinics between 2007 and 2013. Approximately 58% of MSM diagnosed in this period were diagnosed on their first VPCNSS test recorded. Among MSM diagnosed with HIV between 2007 and 2013 with a previous test record at a participating clinic (n=188), a longer median time between tests (233 days; IQR=125-467) was observed compared to persistently HIV negative MSM (n=9,089; 189 days; IQR=105-357; p=0.03).

DISCUSSION

This study utilised seven years of linked surveillance data to describe HIV testing patterns among MSM attending the major primary care HIV clinics in Melbourne. The relatively consistent proportional increase in total tests (increased by 110%) and 12-month return tests (increased by 115%) indicates that most of the increase in HIV testing was driven by MSM testing for HIV at participating clinics for the first time. The contribution of return testing to the increases in overall tests was relatively modest; the proportion of tests occurring within 12 months of an index test increased by only 8.5% and the median number of tests per patient in a given calendar year remained relatively stable. Despite guidelines recommending at least 12-monthly HIV testing for all MSM included in this analysis, approximately half of the tests conducted among MSM in 2012 were not followed by a subsequent test at the same clinic in the ensuing 12 months. Of particular concern, less frequent testing was seen among MSM subsequently diagnosed with HIV compared to those who were persistently HIV negative. While the data are limited to individuals returning to the same clinic, the
trends suggest in-roads in increasing overall HIV testing but little meaningful increase in HIV testing frequency in Australia’s key HIV risk population.

These data correspond with post-HAART era highs in Victorian annual HIV diagnoses, with a steady increase in diagnoses seen over the past five years\(^3\). These patterns broadly reflect Australian HIV surveillance data that also include little change in the proportion of HIV notifications classified at late diagnoses (~30% diagnosed with CD4<350 cells µl\(^1\)). Suboptimal testing frequency demonstrated in this study limit treatment-based prevention strategies that are reliant on early diagnosis and timely consideration of treatment alongside opportunities to modify risk behaviours to interrupt transmission\(^3\). Australian HIV prevention targets include increased testing\(^3\), with local modelling suggesting a reduction in infections would require a 30% decrease in the time MSM are undiagnosed alongside a 70% increase in treatment uptake among those diagnosed\(^3\). It is therefore vital to monitor HIV testing frequency (alongside trends in overall testing) among those at risk.

However, it remains unclear how much overall HIV testing and testing frequency needs to increase, and among whom, to impact the local epidemic. Comparable countries in Europe\(^24,38\) and North America\(^25,39,40\) have also reported increased HIV testing alongside sustained HIV endemicity, late diagnosis and longer intervals between tests for those subsequently diagnosed.

Recent estimates in Australia suggest that approximately 86% of people living with HIV know their status, 77% of those diagnosed with HIV are on ART (66% of all people with HIV) and 85% of people on ART have undetectable viral load\(^1\). While these estimates suggest that Australia has a relatively small gap in achieving the UNAIDS “90 90 90”\(^29\) goal (linked to a 90% reduction in HIV incidence by 2030), rates of undiagnosed infection may be unevenly distributed and remain a potential key driver of infection in Australia\(^27\), especially if clustered within higher risk taking MSM. Local data from MSM recruited through bars, clubs and sex-on-premises-venues in 2008 showed that 31.1% of the sample’s HIV positive MSM were unaware of their HIV status\(^41\). Although relative changes in undiagnosed infection among MSM remain unknown, our data showing little proportional change in 12-monthly HIV testing, a large proportion of MSM (~50%) diagnosed on their first test at a specific VPCNSS clinic and diagnosed MSM with longer intervals between tests are concerning.
MSM reporting high numbers of sexual partners in adjusted analysis was associated with return testing within 12 months. Frequent testing among MSM with high partner turnover is encouraging and demonstrates some individual insight into personal risk. Local campaigns promoting HIV testing among MSM, which have shown some success previously, may have also contributed to frequent testing among those MSM with higher partner turnover. However condom use largely dictates HIV risk among MSM; MSM reporting condomless sex are recommended to test for HIV in Australia up to four times a year, yet in this study these MSM had the same likelihood of 12 month return testing as those consistently using condoms. MSM reporting condomless sex increased over the follow up period, consistent with trends seen in surveys of gay men in Australia, and establishing frequent testing among these MSM is integral to HIV prevention. Modelling of the UK HIV epidemic among MSM demonstrated that increasing rates of diagnosis through increasing testing coverage and frequency and ART initiation may impact the epidemic. However primary prevention was considered equally essential to reducing incidence. The extent to which HIV testing as a prevention strategy is capable of offsetting sexual risk behaviour is an important question in Australia and comparable countries that are moving to implement ‘seek, test, treat’ prevention strategies may also be asking the same question.

There are limitations to the VPCNSS that warrant some caution in the interpretation. First, the inclusion of sexual health centres and specialist gay men’s GP clinics may have resulted in selection bias towards higher risk MSM; the proportion of MSM reporting condomless sex in our data are higher than community-based surveys. MSM may test at different clinics within the VPCNSS or have intermediate tests at clinics outside the network and these tests cannot be linked, resulting in missed HIV tests or diagnoses among MSM. It is unknown what number of tests may be missed, or what proportion of MSM changed clinics during the follow up period. The data are therefore not able to indicate the actual number of MSM who tested within 12 months; however the data are likely to provide indications of testing trends.

Our study also has significant strengths. The VPCNSS has high coverage of those at risk of HIV, as demonstrated by the proportion of all jurisdictional HIV notifications captured (50%).
the VPCNSS provides intra-clinic testing frequency data free from the self-report bias and is the only ongoing linked surveillance system monitoring HIV testing in Australia. Although previous analysis has been conducted from VPCNSS on returning for testing, which provided important insights, this paper extends from the previous analysis which was restricted by a calendar year approach to monitoring return tests. We offer additional data, examination of trends over time, a rolling cohort and greater analysis flexibility through panel data.

These findings demonstrate infrequent HIV testing and ongoing condomless sex among MSM returning to the same clinic in the context of increased HIV notifications. The extent to which HIV testing needs to increase further to impact the HIV epidemic is unknown, but insights from this study can provide comparison indicators for other countries to interrogate HIV testing data as part of an overall a prevention strategy. We also provide important local data from which to evaluate interventions designed to enhance HIV testing frequency in Australia, including ongoing social marketing, optimisation of clinic based strategies and innovative testing models (e.g. rapid-point-of-care tests, community-based testing, home-based testing). This paper highlights the reliance of treatment-based prevention strategies on frequency of testing. Future research should aim to utilise individual longitudinal data to monitor temporal patterns for the entire HIV care cascade to better understand the relative potential prevention gains elicited by frequent testing versus other aspects of the cascade such as time between diagnosis and treatment. Objective empirical data are also necessary to inform mathematical models, from which tailored and targeted strategies for HIV prevention can be identified.
ACKNOWLEDGEMENTS

The authors would like to gratefully acknowledge the patients, notifying medical practitioners and the laboratories for the ongoing participation and contribution to data collection. The authors acknowledge Dr Norm Roth and Dr BK Tee for their provision of clinical advice and ongoing participation of their respective clinics in the VPCNSS. The authors would like to acknowledge Mr Paul Agius for statistical advice on multi-level modelling. The VPCNSS has significant ongoing support from surveillance officers at the Burnet Institute.
REFERENCES

1. The Kirby Institute. HIV, viral hepatitis and sexually transmissible infections in Australia

2. Department of Health. National Notifiable Disease Surveillance System. Available at:

 increases HIV/sexually transmitted infection knowledge and testing in Australian gay men.

6. Read TR, Hocking JS, Bradshaw CS, et al. Provision of rapid HIV tests within a health service
 and frequency of HIV testing among men who have sex with men: randomised controlled
 trial. BMJ. 2013;347:f5086.

 Health Promotion through Social Networking Sites. Journal of Medical Internet Research.

 and unaware that they are infected with the virus in the USA. Aids. 2006;20(10):1447-1450.

<table>
<thead>
<tr>
<th>Year</th>
<th>Total</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>P-value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individuals</td>
<td>17,904</td>
<td>1,928</td>
<td>2,042</td>
<td>2,095</td>
<td>2,241</td>
<td>2,376</td>
<td>3,170</td>
<td>4,052</td>
<td></td>
</tr>
<tr>
<td>HIV tests</td>
<td>46,060</td>
<td>4,431</td>
<td>5,231</td>
<td>5,732</td>
<td>6,483</td>
<td>6,816</td>
<td>8,031</td>
<td>9,336</td>
<td><0.01</td>
</tr>
<tr>
<td>Return tests within 12 months (n)</td>
<td>18,398</td>
<td>1,985</td>
<td>2,444</td>
<td>2,891</td>
<td>3,279</td>
<td>3,519</td>
<td>4,280</td>
<td>-</td>
<td><0.01</td>
</tr>
<tr>
<td>Return tests within 12 months (%)</td>
<td>46.4</td>
<td>44.8</td>
<td>46.7</td>
<td>50.4</td>
<td>50.6</td>
<td>51.6</td>
<td>53.3</td>
<td>-</td>
<td><0.01†</td>
</tr>
<tr>
<td>Median tests per individual</td>
<td>2.0</td>
<td>1.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>1.0</td>
<td>0.65‡</td>
</tr>
</tbody>
</table>

Data from 2014 not available to calculate returning for testing following 2013 tests

*P-value for negative binomial regression for trend
†P-value for two-sample z-test (2007-2012)
‡P-value for Wilcoxon rank-sum test for equality of medians (2007-2013)
Table 2. Predictors of returning for testing among sexually active MSM (n=17,904), January 2007-December 2012

<table>
<thead>
<tr>
<th>Age groups</th>
<th>OR (95% CI)</th>
<th>aOR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16-29</td>
<td>1.5 (1.4-1.7)</td>
<td>1.3 (1.1-1.5)</td>
</tr>
<tr>
<td>30-39</td>
<td>1.3 (1.2-1.5)</td>
<td>1.1 (1.0-1.3)</td>
</tr>
<tr>
<td>40-49</td>
<td>1.0 (0.9-1.2)</td>
<td>0.9 (0.8-1.1)</td>
</tr>
<tr>
<td>50+</td>
<td>reference</td>
<td>-</td>
</tr>
</tbody>
</table>

Country of birth

<table>
<thead>
<tr>
<th></th>
<th>OR (95% CI)</th>
<th>aOR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia</td>
<td>ref</td>
<td>-</td>
</tr>
<tr>
<td>Other</td>
<td>1.1 (1.1-1.2)</td>
<td>1.1 (1.0-1.2)</td>
</tr>
</tbody>
</table>

Number of male partners*

<table>
<thead>
<tr>
<th></th>
<th>OR (95% CI)</th>
<th>aOR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>One</td>
<td>reference</td>
<td>-</td>
</tr>
<tr>
<td>2-5 in six months or 2-10 in 12 months</td>
<td>2.0 (1.8-2.1)</td>
<td>1.9 (1.7-2.1)</td>
</tr>
<tr>
<td>6-10 in six months or 11-20 in twelve months</td>
<td>2.9 (2.6-3.2)</td>
<td>2.9 (2.5-3.2)</td>
</tr>
<tr>
<td>>10 in six months or >20 in twelve months</td>
<td>3.3 (2.9-3.7)</td>
<td>3.5 (3.0-4.0)</td>
</tr>
</tbody>
</table>

Recent condom use†

<table>
<thead>
<tr>
<th></th>
<th>OR (95% CI)</th>
<th>aOR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consistent</td>
<td>reference</td>
<td>-</td>
</tr>
<tr>
<td>Inconsistent</td>
<td>1.0 (0.9-1.1)</td>
<td>1.0 (0.9-1.1)</td>
</tr>
</tbody>
</table>

Type of clinic

<table>
<thead>
<tr>
<th></th>
<th>OR (95% CI)</th>
<th>aOR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sexual Health Centre</td>
<td>1.0 (0.9-1.1)</td>
<td>1.0 (0.9-1.1)</td>
</tr>
<tr>
<td>GP specialising in Gay Men’s Health</td>
<td>0.8 (0.8-0.9)</td>
<td>1.0 (1.0-1.1)</td>
</tr>
</tbody>
</table>

Odds ratio (OR)
Adjusted odds ratio (aOR)
Confidence interval (CI)
Excludes 2013 as data not available from 2014 to calculate returning for testing
Adjusted analysis includes all variables
*Combined variable using recall periods of 12 months (sexual health centre) and six months (other sites)
†Combined variable using recall periods of 12 months and condoms use with any partner (sexual health centre) and six months and specific nomination of with casual or regular partner/s (other sites)
<table>
<thead>
<tr>
<th>Variable</th>
<th>Tests (n)</th>
<th>Tests (%)</th>
<th>Return test (n)</th>
<th>Return test (%)</th>
<th>Tests (n)</th>
<th>Return test (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age groups (years)</td>
<td></td>
</tr>
<tr>
<td>16-29</td>
<td>19,556</td>
<td>42.5</td>
<td>2,164</td>
<td>49.8</td>
<td>2,416</td>
<td>52.8</td>
<td>2,737</td>
<td>52.1</td>
<td>2,948</td>
<td>54.2</td>
<td>3,416</td>
<td>56.6</td>
<td>4,119</td>
<td><0.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30-39</td>
<td>13,695</td>
<td>29.7</td>
<td>1,638</td>
<td>47.1</td>
<td>1,734</td>
<td>50.7</td>
<td>1,911</td>
<td>51.3</td>
<td>2,000</td>
<td>52.4</td>
<td>2,339</td>
<td>52.8</td>
<td>2,598</td>
<td><0.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40-49</td>
<td>7,973</td>
<td>17.3</td>
<td>876</td>
<td>40.6</td>
<td>1,010</td>
<td>46.5</td>
<td>1,167</td>
<td>47.6</td>
<td>1,169</td>
<td>48.2</td>
<td>1,402</td>
<td>50.2</td>
<td>1,561</td>
<td><0.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50+</td>
<td>4,836</td>
<td>10.5</td>
<td>553</td>
<td>43.2</td>
<td>572</td>
<td>46.5</td>
<td>668</td>
<td>47.5</td>
<td>699</td>
<td>44.5</td>
<td>829</td>
<td>46.2</td>
<td>1,058</td>
<td><0.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Country of birth</td>
<td></td>
</tr>
<tr>
<td>Australia</td>
<td>28,210</td>
<td>61.3</td>
<td>3,352</td>
<td>47.3</td>
<td>3,610</td>
<td>49.8</td>
<td>4,015</td>
<td>49.5</td>
<td>4,101</td>
<td>51.3</td>
<td>4,683</td>
<td>54.3</td>
<td>5,409</td>
<td><0.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>14,241</td>
<td>30.9</td>
<td>1,526</td>
<td>48.5</td>
<td>1,681</td>
<td>53.4</td>
<td>2,008</td>
<td>54.0</td>
<td>2,183</td>
<td>54.2</td>
<td>2,554</td>
<td>55.5</td>
<td>3,124</td>
<td><0.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>3,609</td>
<td>7.8</td>
<td>441</td>
<td>44.2</td>
<td>460</td>
<td>45.2</td>
<td>532</td>
<td>43.6</td>
<td>794</td>
<td>40.2</td>
<td>803</td>
<td><0.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of male partners †</td>
<td></td>
</tr>
<tr>
<td>One</td>
<td>5,553</td>
<td>12.1</td>
<td>762</td>
<td>32.8</td>
<td>833</td>
<td>38.4</td>
<td>764</td>
<td>34.0</td>
<td>814</td>
<td>35.3</td>
<td>832</td>
<td><0.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-5 in six months or 2-10 in 12 months</td>
<td>20,593</td>
<td>44.7</td>
<td>2,333</td>
<td>46.2</td>
<td>2,678</td>
<td>49.9</td>
<td>2,907</td>
<td>46.9</td>
<td>3,108</td>
<td>51.4</td>
<td>3,640</td>
<td>52.7</td>
<td>4,142</td>
<td><0.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-10 in six months or 11-20 in twelve months</td>
<td>5,833</td>
<td>12.7</td>
<td>703</td>
<td>56.2</td>
<td>805</td>
<td>61.5</td>
<td>853</td>
<td>59.7</td>
<td>1,002</td>
<td>63.3</td>
<td>1,119</td>
<td><0.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>>10 in six months or >20 in twelve months</td>
<td>4,709</td>
<td>10.2</td>
<td>603</td>
<td>58.9</td>
<td>660</td>
<td>62.3</td>
<td>688</td>
<td>62.2</td>
<td>759</td>
<td>64.2</td>
<td>842</td>
<td><0.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>9,372</td>
<td>20.4</td>
<td>781</td>
<td>49.8</td>
<td>1,038</td>
<td>53.9</td>
<td>1,278</td>
<td>54.0</td>
<td>1,403</td>
<td>51.8</td>
<td>1,816</td>
<td>52.5</td>
<td>2,401</td>
<td><0.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recent condom use ‡</td>
<td></td>
</tr>
<tr>
<td>Consistent</td>
<td>17,854</td>
<td>38.8</td>
<td>2,247</td>
<td>47.4</td>
<td>2,324</td>
<td>50.3</td>
<td>2,408</td>
<td>51.0</td>
<td>2,705</td>
<td>52.3</td>
<td>3,066</td>
<td>54.6</td>
<td>3,329</td>
<td><0.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inconsistent</td>
<td>15,865</td>
<td>34.4</td>
<td>1,931</td>
<td>47.3</td>
<td>2,125</td>
<td>51.0</td>
<td>1,934</td>
<td>49.1</td>
<td>2,309</td>
<td>51.9</td>
<td>2,699</td>
<td>53.8</td>
<td>3,117</td>
<td><0.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>12,341</td>
<td>26.8</td>
<td>1,053</td>
<td>44.2</td>
<td>1,283</td>
<td>49.9</td>
<td>2,141</td>
<td>51.4</td>
<td>1,802</td>
<td>50.3</td>
<td>2,266</td>
<td>51.0</td>
<td>2,890</td>
<td><0.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type of clinic</td>
<td></td>
</tr>
<tr>
<td>Sexual Health Centre</td>
<td>30,701</td>
<td>66.7</td>
<td>3,070</td>
<td>47.3</td>
<td>3,669</td>
<td>51.2</td>
<td>4,252</td>
<td>50.9</td>
<td>4,695</td>
<td>53.4</td>
<td>5,721</td>
<td>56.0</td>
<td>6,842</td>
<td><0.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GP specialising in Gay Men's Health</td>
<td>15,359</td>
<td>33.4</td>
<td>2,161</td>
<td>45.9</td>
<td>2,063</td>
<td>49.0</td>
<td>2,231</td>
<td>50.0</td>
<td>2,121</td>
<td>47.7</td>
<td>2,310</td>
<td>46.6</td>
<td>2,494</td>
<td><0.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*P-value for negative binomial regression for trend
†Combined variable using recall periods of 12 months (sexual health centre) and six months (other sites)
‡Combined variable using recall periods of 12 months and condoms use with any partner (sexual health centre) and six months and specific nomination of with casual or regular partner/s (other sites)