Chlamydia and gonorrhoea point-of-care testing in Australia: where should it be used?

Lisa Natoli,*1,2 Rebecca J Guy,1 Mark Shephard,3 Basil Donovan,4 Christopher K Fairley,5 James Ward6, David G Regan,1 Belinda Hengel7, Lisa Maher1 on behalf of the TTANGO Investigators

*Corresponding author: lisan@burnet.edu.au; GPO Box 2284, Melbourne, Victoria, Australia 3001

1The Kirby Institute, University of New South Wales, Sydney, NSW, Australia

2The Burnet Institute, Melbourne, VIC, Australia

3Flinders University International Centre for Point of-Care Testing, Flinders University, Adelaide, SA, Australia

4Sydney Sexual Health Centre, Sydney Hospital, Sydney NSW, Australia

5Melbourne Sexual Health Centre; Central Clinical School, Monash University, Melbourne, VIC, Australia

6Baker IDI, Alice Springs, Australia

7Apunipima Cape York Health Council, Cairns, QLD, Australia

Word count: 4215
ABSTRACT

Background: Diagnoses of chlamydia and gonorrhoea have increased steadily in Australia over the past decade. Testing and treatment is central to prevention and control but in some settings treatment may be delayed. Testing at the point-of-care has the potential to reduce these delays. We explored the potential utility of newly available accurate point-of-care tests in various clinical settings in Australia. Methods: In-depth qualitative interviews were conducted with a purposively selected group of 18 key informants with sexual health, primary care, remote Aboriginal health and laboratory expertise. Results: Participants reported that point-of-care testing would have greatest benefit in remote Aboriginal communities where prevalence of sexually transmissible infections is high and treatment delays are common. Some suggested that point-of-care testing could be useful in juvenile justice services where young Aboriginal people are over-represented and detention periods may be brief. Other suggested settings included outreach (where populations may be homeless, mobile or hard to access, such as sex workers in the unregulated sex industry and services which see gay, bisexual and other men who have sex with men). Point-of-care testing could also improve the consumer experience and facilitate increased testing for sexually transmitted infections among HIV-positive clients between routine HIV management visits. Some participants disagreed with the idea of introducing point-of-care testing to urban services with easy access to pathology facilities. Conclusions: Participants felt that point-of-care testing may enhance pathology service delivery in priority populations and in particular service settings. Further research is needed to assess test performance, cost, acceptability and impact.
Background

Sexually transmissible infections (STIs) are an important public health issue. Left untreated, STIs can cause reproductive morbidity (1-3) and increase the risk of HIV transmission.(4, 5) In Australia diagnoses of *Chlamydia trachomatis* (CT) and *Neisseria gonorrhoeae* (NG) have increased steadily in the past decade.(6) High rates of CT and NG are seen in gay, bisexual and other men who have sex with men (GBM) and Aboriginal and/or Torres Strait Islander peoples (hereafter referred to as ‘Aboriginal’) and CT is common in young people aged 16-29 years.(6-10) Prisoners, sex workers, and people who inject drugs (11-15) are also considered priority populations in national STI control strategies.(6)

Testing and treatment is a key STI prevention and control strategy (16) and in Australia testing is recommended at least annually for most priority populations and more frequently for higher-risk GBM and sex workers.(17-19) STI testing is available at general practices, Aboriginal Community Controlled Health Services, sexual health clinics, family planning clinics and many other settings, with most STIs diagnosed via the primary care sector.(20) Most clinical services treat symptomatic patients immediately, however this only equates to a small proportions of infections. The vast majority of infections are asymptomatic (21) and involve clinicians sending specimens for laboratory testing with results typically available to the health service within a few days. However in some clinical settings, notably those in geographically isolated areas, significant delays occur between specimen collection and patient treatment due to a variety of reasons, often related to specimen transport and loss to follow up. Point-of-care (POC) testing has the potential to increase the number of people with STIs treated during the consultation and thereby reduce the duration of infectiousness. Mathematical modelling indicates that POC testing could reduce STI prevalence in moderate
to high prevalence settings, especially where onward STI transmission is likely, due to long delays between testing and treatment and low return rates of patients for treatment.(22)

POC tests for CT and NG have not been used widely in Australian or elsewhere due to sub-optimal diagnostic accuracy. (23, 24) However recent technological advancements have led to the first molecular-based POC test for the dual detection of CT and NG.(25) The Xpert CT/NG assay (Cepheid) has sensitivity and specificity equivalent to the conventional laboratory-based nucleic acid amplification tests (NAAT) routinely used for STI diagnosis in Australia and elsewhere.(26, 27) In the context of the ‘Test Treat ANd GO’ (TTANGO) Trial, a randomised controlled trial of the Xpert CT/NG assay in remote Aboriginal communities,(28) we used qualitative methods to identify settings where CT/NG POC testing would be most clinically useful in Australia.

Methods

Ethics statement

Ethical approval for the study was received from the West Australian Aboriginal Health Information and Ethics Committee, the West Australian Community Health Board Research Ethics Committee, the Townsville and Cairns Health Service District Human Research Ethics Committees and, the Aboriginal Health Research Ethics Committee of South Australia.

Study design

Between March and August 2013, in-depth interviews were conducted with key experts to explore, among other issues, potential settings where CT/NG POC testing may be beneficial
in Australia. The focus was on POC testing generally and not limited to NAAT, although NAAT were often the focus of discussion.

Participants

Purposive sampling was used to provide diversity in demographics and expertise. Participants (n=18) included sexual health physicians and nurses in urban, regional and remote health services (n=8), academics (n=2), policy makers (n=4), and laboratory based microbiologists (n=4). Participants were drawn from five of the eight Australian States and Territories, and included individuals with current or previous professional experience in remote Aboriginal communities. A number of participants had experience working with or in prison services and conducting outreach programs. The majority of participants were male (56%) and the average age was 49 years (range 39-58 years).

Interviews

Interviews were conducted by the first author in person where possible, or via telephone or internet, and lasted between 30 and 75 minutes. Written informed consent was obtained from all participants.

Data management and analysis

Recruitment continued until the data were saturated or no new themes emerged. Interviews were digitally-recorded, transcribed verbatim and transcripts were later checked for accuracy against the recordings and to ensure familiarisation prior to analysis. Transcripts were uploaded into QSR Nvivo (Version 10), a qualitative data management and analysis program (QRS International PTY Ltd, Melbourne, Australia). Each transcript was
systematically coded and content analysis was conducted to examine frequencies of recurring codes and to identify salient themes. (30)

Results

When considering the utility of CT/NG POC testing in Australia (Figure 1), participants often qualified their responses as contingent on the type of POC test available, particularly in relation to characteristics such as sensitivity and specificity, ease of use, turn-around time of results and cost.

[I]t’s just at what point does the technology become easy enough, acceptable enough and accurate enough that rather than sending off the swab or the urine, that you would just do it on the spot (Participant # 12).

There was also a clear understanding by some that POC test utility must be considered in the context of STI prevalence, target populations and purpose of testing (for example screening or diagnosis).

[T]here’s a whole lot of factors you need to take into account ... its usefulness ... is pretty specific to ... different settings or services rather than it being a blanket [approach] ...to be used in the same way across the board ... a lot of people out there are not mindful of that ... they will just see it as a new test (Participant # 15).

Participants emphasised the value of POC testing in high prevalence settings or populations, where there is a reasonable risk of onward STI transmission in the time between testing and treatment, and where patient loss to follow up is a consideration.

[T]o justify it, you want a high enough prevalence to warrant the expense, and a high enough risk of people continuing to have sex or going missing after the sample’s been taken, and before you get to treat the infection ... [O]ne of the benefits of the rapid test
is that you treat them now rather than after they’ve had sex with two more people in the five days waiting for the result (Participant # 6).

There was consensus that CT/NG POC testing would be of greatest value in clinical settings that provide services to a high case load of young people, Aboriginal people, GBM, sex workers (specifically in the unregulated sex industry), and others who are highly transient or mobile and less likely to return for test results. These settings include:

a) **Health services in rural and remote communities**

Participants felt that POC testing would be especially suited to health services in rural and remote communities where prevalence of STIs is high.

The best settings would be where the patients are some distance from an accredited pathology laboratory, and where distance is going to be a problem in getting a specimen to the laboratory and getting a result back to the patient ... [W]e’re talking about ... a few days to a week or so delay ... in terms of turnaround time. So that’s basically going to be remote type communities (Participant #18).

Some respondents suggested that testing might be provided through Aboriginal Community Controlled Health services, government services, affiliated mobile women’s clinics or small hospitals, and that it could be neatly integrated within the existing framework for adult health checks¹.

¹ an Australian government initiative that targets Aboriginal people (15-54 yrs) to facilitate early detection, diagnosis and management of common, treatable conditions.
Many highlighted the challenges of returning positive results to clients in remote communities and how resource-intensive this task can be in practice, suggesting that the timeliness of POC testing could make a positive difference.

In remote areas you’ve got like a 20% positivity rate, then that’s one in five people you don’t have to go and find, whereas if you’re in an area that’s got a 2% positivity rate, then you’re going to do an awful lot of tests to reduce the relatively small amount of follow-up (Participant #12).

If you can do it [provide test results to clients] on the same day ... there’s less work to be done in either ringing people, chasing people, bringing people back for review, that kind of thing. It wouldn’t eliminate it, but it would reduce that work quite substantially (Participant # 6).

Some participants noted that CT/NG POC testing might specifically appeal to young people in these communities, as they are often less likely to access health services and be more concerned about privacy and confidentiality.

If a young person didn’t want to be contacted afterwards, so they were worried about maybe having a visit or a phone call from the clinic and ... ‘outing’ them as having a problem, being able to get their results at the same time and know they’re not going to be contacted for results might be more acceptable to them (Participant # 12).

The possibility of providing molecular POC testing within rural/regional pathology services was also mentioned.
So at the moment two day turnaround time, we can transfer the result electronically back to them, but we physically have to get the specimen 3,200km from [name of community removed] down to [name of city removed] for us to actually test it ... We've had a long term plan of rolling out regional molecular work but we need the appropriate machinery to do it, because it has to be a very simple ‘lab in a box’ system for us to actually be able to put these into the regional laboratories (Participant #17).

b) General practice

While many participants identified general practice as a possible setting for CT/NG POC testing, opinions about the appropriateness of POC testing in this context were mixed. Some participants felt that if a simple, inexpensive, accurate POC test was available, then uptake would be high and testing would be particularly useful with symptomatic clients and young people.

You have your pap smear... your chlamydia test ... get the treatment at the same time. It cuts down the workload of the GP [general practitioner], it costs less money for the woman, not two consultations, and it certainly is something that practice nurses would be able to do. So you’ve got a young person ... that’s been referred to you for your vaccinations, Gardasil or whatever, you do a chlamydia test at the time, it’s great (Participant #10).

Others questioned how useful CT/NG POC testing would be in general practice, especially if the test was complex and time consuming which would add time to the consultation.
I don’t think it would [work] because GP clinics are businesses, they are very careful about what staff do, and they're ... incredibly busy environments... To take somebody off what they’re currently doing to do the point-of-care-tests, even if there’s only one or two a day, it would be difficult to fit in and the clinics aren’t going to want the patients hanging around for one to two hours (Participant #8).

Several participants considered STI prevalence as an important factor in discussing the suitability of general practice for CT/NG POC testing. Some felt that POC testing might be more acceptable in practices with a high case load of GBM or young people. One respondent also highlighted that as annual chlamydia testing rates are currently low among young people in general practice, then POC testing is unlikely to have a public health benefit unless testing rates increase.

We know that for a ‘seek, test and treat’ model around chlamydia ... the annual testing rates are going to have to be really, almost prohibitively high. So trying to access those numbers through standard general practice ... realistically getting testing rates up to 40% in young women for example is going to be very difficult (Participant # 11).

Finally, some participants suggested that POC testing might be more suited to general practices in rural and regional centres where pathology turn-around time is slower, or in community health service settings not governed by a business model.

c) Prisons

Respondents held mixed views about the need and suitability of CT/NG POC testing within
prison health services. Some noted that cost would be an important consideration, especially in jurisdictions where a large number of STI tests are routinely ordered for individuals.

It could be helpful, but … most prisons have … access to high quality healthcare … every state in Australia does it differently of course … but in New South Wales … they have access to the same quality of pathology that I get access to in this clinic, and the turnaround of results is equally as fast, and the thing about prisons is that people know where you are. So if someone’s tested positive … they’re going to know where they are to find them and go and get them treated (Participant # 9).

Opinions were more unified in relation to CT/NG POC testing in specific prison such as watch-house, remand and juvenile justice services, where detainees are likely to move on in short time-frames.

Watch-house populations might be good, remand and reception where you’ve got a steady flow through … [W]e had wanted to do testing in the watch-house … and it was … a bit tricky because … They come in overnight but then they’d be gone pretty early in the morning … But a rapid test would have been … very useful (Participant # 4).

It’d be great in the jails because the prisoners get moved on. You test them and then in a week you send the guards to get them and they come back and go, “No, they’ve been moved to [name of town removed]”. You know? It’s like, “Oh … now I’ve got to contact [name of prison removed], they’ve got to then find them, I’ve got to fax them the results”, it’s just a pain. That [POC testing] would be great (Participant # 10).
Juvenile justice services were also highlighted. Participants commented that Aboriginal people are over-represented in this setting, and that young people generally have the highest prevalence of STIs.

"[J]uvenile justice, because so many kids are on remand, and they come in and they’re in for two or three days and then we can’t find them again. [I]t [POC testing] would be very helpful I think, and obviously they are the group with the biggest risk of STIs anyway" (Participant # 2).

"[J]uvenile justice settings, very very quick turn-around, within 24 hrs ... and they have an unhealthily and frightening over-representation of young Aboriginal people ... that would be an ideal setting to offer point-of-care testing" (Participant # 3).

d) Outreach settings

Provided there are processes in place to offer treatment for positive clients, several respondents suggested that CT/NG POC testing might be utilised in a range of outreach settings, such as those provided by existing services (outreach mobile vans), or the large-scale health screening initiatives in remote communities.

Country fairs, health community days, sporting events and music festivals were also mentioned as other community events that could be potential sites for opportunistic STI POC outreach testing.

"[C]ertainly thinking about using this [POC testing] ... in an innovative way to get
population reach particularly around chlamydia because it’s such a generalised epidemic. So, down the track, whether you want to look at music festivals, schoolies weeks [Year 12 end of school festival], any sort of public space where you can access large numbers of sexually active young people (Participant #11).

Other outreach settings such as entertainment venues (eg. nightclubs) and sex-on-premises venues were suggested as sites where CT/NG POC testing could be performed, as were mobile services to marginalised and homeless people, such as Street Doctor\(^2\) in West Australia. However it was noted by one respondent, that in some circumstances (eg. night-clubs) ease of specimen collection might outweigh being able to provide a result and treatment on the spot, and it might be more convenient to call people with results the following day.

One respondent emphasised the need for prevalence in the target population to be sufficiently high to justify outreach POC testing.

\(\text{Outreach} \ ... \text{services that deal with high risk populations. But it doesn’t matter wherever it is, whether it’s Arnhem Land or a footpath in Footscray where they look after drug users or sex workers} \ ... \text{Doesn’t matter, it’s got to be a sufficiently high prevalence to make it a cost-effective intervention (Participant # 6).}\)

e) **Other primary health care services**

\(^2\) A mobile primary care service aiming to improve the health of marginalised people of all ages.
Other primary health care services identified as being potentially suited to CT/NG POC testing included sexual health clinics, hospital emergency departments, family planning services, youth-focussed services, student health services (e.g. within tertiary sector), and facilities that provide pap smear and antenatal care services, particularly in scenarios where non-medical staff may be available to perform the testing and provide the service at a cheaper cost than doctors.

Some felt that POC testing could be particularly useful in emergency departments, especially in hospitals that target women.

If someone comes in with pelvic pain … it’s done immediately, they’re getting a result in an hour or something … because if you go to emergency you’re going to be sitting there for several hours before people work out what’s wrong with you (Participant # 15).

Others felt that sexual health services would be well suited to CT/NG POC testing, especially where the POC test approach is already well accepted (e.g. use of gram stain or HIV POC tests). While loss to follow up is generally low in these services, POC testing may have added benefit for certain client groups, such as transient or mobile populations.

Backpackers are particularly an issue for us. They come, they’re gone tomorrow. We can always ring them and tell them they’ve got something but you have no idea if they get treated or not (Participant # 2).
Some participants strongly disagreed with the idea of introducing POC testing to urban services with easy access to pathology facilities.

I don’t believe that they’re [POC tests] well suited for situations like … where you’ve got a sexual health practice … that has a very good pathology service within that city or town. Most labs these days will run CT/NG assays once daily. In fact as long as they get the specimen in before the run is performed, you know they will have a result that day and at worst within 24 hours, the only difficulty is … Friday afternoons and whether the lab is willing to do something over a weekend (Participant #18).

One participant identified the potential utility of CT/NG POC testing for GBM with HIV infection, as a means of maintaining frequency of STI testing between scheduled visits with their HIV physician.

[W]e know for example that syphilis is well over-represented among HIV positive individuals. So, whereas in Victoria patients were encouraged to attend their specialist quarterly, now this happens every 6 months and potentially there may be periods in the middle where they could just get a … point-of-care test to maintain their frequency of STI testing (Participant #11).

The potential to integrate CT/NG POC testing within needle and syringe programs was also mentioned, but only where services take a more comprehensive primary health care approach.

[I] wouldn’t want to see it attached to any old needle and syringe program, but certainly the primary health care service model that exists in Victoria for people who
inject drugs and other drug users ... like ‘Inner Space’ or ‘Health Works’ or ‘The Foster Street Clinic’ down in Dandenong (Participant # 11).

Health services that reach sex workers in the unregulated sex industry, particularly migrant workers, were suggested as another potential site for POC testing.

[Services like Inner South Community Health that see sex workers ... particularly ... in the unregulated sex industry ... We know chlamydia rates are much lower in commercial sex workers working in the regulated sex industry than in the general population so ... there are potentially those ... migrant sex workers, who are notoriously hard to access (Participant # 11).

Student health services within universities and schools were considered as possible site options for CT/NG POC testing by a few respondents, though the respective populations were recognised to be relatively stable and easy to follow up via routine test pathways (assuming testing is accessed).

Discussion

This study identified a range of clinical and other settings in Australia where CT/NG POC testing may be suitable. Participant views about POC test applicability were contingent on multiple factors such as test performance and operational characteristics, STI prevalence within the target population and access to routine laboratory services.
Participants identified the greatest potential benefit in remote Aboriginal communities where the prevalence of CT and NG in young people is much higher than in other populations and where treatment delays of 21 days on average have been reported. (31) In this setting POC tests have the potential to overcome treatment delays, improve test coverage, strengthen clinical practice and improve health outcomes. (32-35) Several participants also felt that CT/NG POC testing could be useful in outreach settings, where populations may be homeless or mobile and difficult to locate for treatment. (36) No data could be identified in Australia describing treatment rates or treatment delays in outreach programs, however a systematic review of outreach programs by Hengel et al, (36) described use of a combination of in-person, phone, SMS, mail and email to provide participants with their results, and most reported a 100% treatment rate. Thus before considering use of POC in outreach program an assessment of treatment uptake and timeliness should be formally undertaken in the target population.

Participants were uncertain about the role of CT/NG POC testing in general practice. As noted by participants, GP clinics generally have a business-orientated approach which may not support CT/NG POC testing, unless there is a clear financial or time-saving benefit for the practice. For example many practices conduct INR (a blood test used to monitor anticoagulant therapy) POC testing on-site as it allows them to adjust warfarin dosing immediately, rather than waiting for pathology results and spending time, often after hours, calling the patient. As many GPs have pathology collection centres on-site there may be opportunities for the pathology provider to perform the POC testing instead.

Prisoners are recognised as a priority population for STI testing (11, 12) but testing coverage is often suboptimal. In a large audit of prison medical records in WA, CT and/or NG testing was documented for only 51% of prisoners. (11) For long stay prisoners, participants were
unsure if POC testing would add value over laboratory based NAAT testing.(37-40) Conversely a POC testing model may be more useful in juvenile detention centres where there is an over-representation of Aboriginal people, STI prevalence is high and there is a risk of loss to follow up due to short remand periods. In one study of STIs in a rural juvenile detention facility (41) the prevalence of urethral chlamydia was 16% among new medium-to-long-term detainees, the median age of participants was 17 years and 87% were Aboriginal. In another study (11) it was found that among juveniles, females were significantly more likely to have a positive chlamydia test than males. Given the observed high prevalence of chlamydia among juvenile females and the difficulties involved in providing follow-up clinical management, juvenile females are now offered empirical treatment for chlamydia at the time of testing. If POC testing becomes available, empirical treatment may no longer be required. A formal assessment of the extent of loss to follow up and treatment delays in short-stay prisons is warranted to inform the potential for POC to be useful in this setting.

In surveys, the majority of GBM report a preference for HIV POC tests (rather than conventional laboratory tests) due to immediacy of result and convenience,(36, 42-45) indicating CT/NG POC testing may be more acceptable than routine laboratory testing and subsequently achieve higher testing uptake and frequency. HIV POC testing for GBM has proven to be achievable and acceptable in a number of settings in Australia and overseas,(42, 43, 46) with Australian community-based services reaching a high proportion of GBM who have never previously been tested. (42, 43) Also for GBM with HIV infection, as HIV management checks are now being conducted less frequently, sometimes only yearly, then additional opportunities are needed for STI testing which is recommended every 3-6
months in high-risk men. In London, the Dean St sexual health clinic has recently introduced POC testing for CT/NG with reported success in reducing the time to treatment.(47)

Our study has several limitations. The qualitative approach, small sample size and the non-random nature of the sampling strategy limit the generalisability of our findings. However, as we purposively sampled a broad range of recognised experts from different disciplines and jurisdictions with expertise in the testing and diagnosis of STIs, the volume of data generated was substantial, as was the depth and detail of the interview transcripts.

In conclusion, the stakeholders interviewed indicated a range of settings where POC testing may enhance the current approach to testing for CT and NG. However, as Australia has good laboratory infrastructure, there would need to be a comprehensive evaluation of improvements to treatment delays and loss to follow up for each population/setting where POCT is being considered, together with an assessment of POC test performance, cost, acceptability and public health impact.
Figure 1: Considerations for CT/NG POC test utility in various clinical settings in Australia

SETTING
- Remote
- Prison
- Primary care
- Outreach

SUITABLE CT/NG POC TEST
- Performance & operational characteristics
- Cost

POTENTIAL POPULATIONS
- Aboriginal & Torres Strait Islander people
- Young people
- Gay, bisexual & other men who have sex with men
- Sex workers- unregulated
- Marginalised populations
- Mobile

CONTEXTS to JUSTIFY POC TEST USE
- ↑ Prevalance STIs
- ↑ Distance to labs
- Poor access to STI testing
- ↑ Mobility & loss to follow up
- ↑ Risk STI transmission b/w testing & treatment
Conflict of interest

The authors declare no competing interests. Cepheid has provided GeneXpert machines on loan for the duration of the TTANGO Trial.

Authors’ contributions

LN performed data collection and analysis, and led the development, drafting and revision of the manuscript. RG and LM advised on data collection tools, interview process and data analysis and supported manuscript development and critical revision. MS, BD, CF, DR and BH provided critical review of manuscript and revision of drafts. JW provided cultural oversight. RG provided overall supervision of manuscript. All authors read and approved the final paper.

Acknowledgements

The authors would like to acknowledge and thank the interview participants who gave so generously of their time. TTANGO is a collaboration between researchers named in the authorship list, additional TTANGO investigators not named as authors (John Kaldor, David Wilson, Handan Wand, Steven Badman and Louise Causer from the Kirby Institute; Annie Tangey, Ngaanyatjarra Health Service; David Anderson, Burnet Institute; David Whiley, The Queensland Pediatric Infectious Diseases Laboratory; Sepehr N. Tabrizi, The Royal Women’s Hospital), and is conducted in partnership with Queensland Aboriginal and Islander Health Council; Queensland Health; Aboriginal Health Council of Western Australia; West Australia Department of Health;
West Australian Country Health Service; Aboriginal Health Council of South Australia; South Australia Health; Western Diagnostic Pathology; PathWest; Pathology Queensland; Sullivan Nicolaides Pathology; Clinipath Pathology; SA Pathology; National Reference Laboratory; Medical Communication Associates; and Cepheid. The study would not have been possible without the commitment of all participating health services and their staff and the ongoing support and advice from our partners. The authors acknowledge the important contributions of the TTANGO Reference Group.

Funding

TTANGO is funded by a National Health and Medical Research Council (NHMRC) Project Grant # 109902. The Kirby Institute receives funding from the Australian Government Department of Health and Ageing. We gratefully acknowledge the contribution to this work of the Victorian Operational Infrastructure Support Program received by the Burnet Institute.

