Support women in science at Burnet Institute
Donate today to support women in science at Burnet and their work to unlock the vaginal microbiome and reduce risk of HIV infection and preterm birth for women around the world.
Donate today to support women in science at Burnet and their work to unlock the vaginal microbiome and reduce risk of HIV infection and preterm birth for women around the world.
Smart drug delivery systems represent state-of-the-art approaches for targeted therapy of life-threatening diseases such as cancer and cardiovascular diseases. Stimuli-responsive on-demand release of therapeutic agents at the diseased site can significantly limit serious adverse effects. In this study, we engineered a near-infrared (NIR) light-responsive liposomal gold nanorod-containing platform for on-demand delivery of proteins using a hybrid formulation of ultrasmall gold nanorods (AuNRs), thermosensitive phospholipid (DPPC) and non-ionic surfactant (Brij 58). In light-triggered release optimization studies, 55.6% (+/-4.8) of a FITC-labelled model protein, ovalbumin (MW 45kDa) was released in 15min upon NIR irradiation (785nm, 1.35W/cm(2) for 5min). This platform was then utilized to test on-demand delivery of urokinase-plasminogen activator (uPA) for bleeding-free photothermally-assisted thrombolysis, where the photothermal effect of AuNRs would synergize with the released uPA in clot lysis. Urokinase light-responsive liposomes showed 80.7% (+/- 4.5) lysis of an in vitro halo-clot model in 30min following NIR irradiation (785nm, 1.35W/cm(2) for 5min) compared to 36.3% (+/- 4.4) and 15.5% (+/- 5.5) clot lysis from equivalent free uPA and non-irradiated liposomes respectively. These results show the potential of low-dose, site-specific thrombolysis via the combination of light-triggered delivery/release of uPA from liposomes combined with photothermal thrombolytic effects from gold nanorods. In conclusion, newly engineered, gold nanorod-based, NIR light-responsive liposomes represent a promising drug delivery system for site-directed, photothermally-stimulated therapeutic protein release.