Adolescent Health in Myanmar
Support Burnet’s Adolescent Health Programs in Myanmar today.
Support Burnet’s Adolescent Health Programs in Myanmar today.
Support Burnet’s Adolescent Health Programs in Myanmar today.
Support Burnet’s Adolescent Health Programs in Myanmar today.
The non-obese diabetic mouse (NOD) expresses a unique form of the high affinity receptor for IgG (FcgammaRI), containing multiple mutations that result in substitutions and insertions of amino acids and a truncated cytoplasmic tail. As a result of these major changes, receptor affinity for IgG increases 10-fold over that of wild-type FcgammaRI from BALB/c mice, while the specificity for ligand is retained. Kinetic analysis revealed that while the association rate of IgG with FcgammaRI from NOD mice (FcgammaRI-NOD) and FcgammaRI from BALB/c mice (FcgammaRI-BALB) is similar, IgG bound much more tightly to FcgammaRI-NOD as revealed by a profoundly diminished dissociation rate. Transfection studies demonstrated that FcgammaRI-NOD was expressed at one-tenth of the level of FcgammaRI-BALB. Although mouse FcgammaRI was previously not known to associate with the FcepsilonRI gamma-subunit, transfection of COS-7 cells demonstrates that like human FcgammaRI, mouse FcgammaRI is also able to associate with this signaling subunit. Furthermore, expression levels of FcgammaRI-NOD were not restored by the presence of the FcepsilonRI gamma-subunit. The difference in the levels of expression was mapped to mutations in the extracellular region of FcgammaRI-NOD as replacement of the extracellular domains with those of human FcgammaRI or FcgammaRI-BALB restored expression to that of human FcgammaRI or FcgammaRI-BALB.