Publications & Reports

Cloning and characterization of a novel NK cell-specific serine protease gene and its functional 5'-flanking sequences.

Smyth MJ, Hulett MD, Thia KY, Young HA, Sayers TJ, Carter CR, Trapani JA
Cellular Cytotoxicity Laboratory, Austin Research Institute, Austin Hospital, Heidelberg, Victoria, Australia.


Rat natural killer cell Met-ase-1 (RNK-Met-1) is a 30,000 M® serine protease (granzyme) found in the cytolytic granules of CD3- large granular lymphocytes (LGL) with natural killer (NK) activity. To characterize the genomic sequences responsible for the CD3- LGL-restricted expression of this gene, we screened a rat genomic library with RNK-Met-1 cDNA, and obtained bacteriophage clones that contained the RNK-Met-1 gene. The RNK-Met-1 gene comprises 5 exons and spans approximately 5.2 kilobases (kb), exhibiting a similar structural organization to a class of CTL-serine proteases with protease catalytic residues encoded near the borders of exons 2, 3, and 5. The 5'-flanking region of the RNK-Met-1 gene contains a number of putative promoter and enhancer regulatory elements and shares several regions of homology with the 5'-flanking region of the mouse perforin gene. We have prepared nested deletions from approximately 3.3 kb of the 5'-flanking region of the RNK-Met-1 gene, and inserted these upstream of the chloramphenicol acetyltransferase (CAT) reporter gene. These 5'-flanking RNK-Met-1-CAT constructs were transiently transfected into rat LGL leukemia, T-lymphoma, and basophilic leukemia cell lines. The transcriptional activity of the RNK-Met-1 5'-flanking region was strong, restricted to the RNK-16 LGL leukemia and controlled by several positive cis-acting regions spread over at least 3.3 kb. The longest and most active 5'-flanking region (-3341 to -33) was also used to drive specific expression of beta-galactosidase in RNK-16. These data are consistent with the NK cell-specific expression of RNK-Met-1 and suggest the potential utility of this gene promoter in the development of transgene models of NK cell biology in vivo.


  • Journal: Immunogenetics
  • Published: 01/07/1995
  • Volume: 42
  • Issue: 2
  • Pagination: 101-111