Publications & Reports

A cytosolic granzyme B inhibitor related to the viral apoptotic regulator cytokine response modifier A is present in cytotoxic lymphocytes.

Sun J, Bird CH, Sutton V, McDonald L, Coughlin PB, De Jong TA, Trapani JA, Bird PI
Department of Medicine, Monash Medical School, Box Hill Hospital, Box Hill 3128, Australia. philb@boxhill.med.monash.edu.au

Abstract

Using a polymerase chain reaction strategy we identified a serine proteinase inhibitor (serpin) in human bone marrow that is related to the cellular serpin proteinase inhibitor 6 (PI-6) and the viral serpin cytokine response modifier A (CrmA). This serpin, proteinase inhibitor 9 (PI-9), has an unusual reactive center P1(Glu)-P1'(Cys), which suggests that it inhibits serine proteinases that cleave after acidic residues. The only known serine proteinase with this specificity is granzyme B, a granule cytotoxin produced by cytotoxic lymphocytes. To test the interaction of PI-9 with granzyme B we prepared recombinant hexa-histidine tagged PI-9 in a yeast expression system. Addition of the recombinant protein to native granzyme B resulted in an SDS-resistant complex typical of serpin-serine proteinase interactions. Further analysis showed that complex formation followed bimolecular kinetics with a second order rate constant of 1.7 +/- 0.3 x 10(6) M-1 s-1, which is in the range for a physiologically significant serpin-proteinase interaction. Recombinant PI-9 also completely abrogated granzyme B and perforin-mediated cytotoxicity in vitro. Examination of PI-9 mRNA distribution demonstrated that it is expressed in immune tissue, primarily in lymphocytes. The highest levels of PI-9 mRNA and protein were observed in natural killer cell leukemia cell lines and in interleukin-2 stimulated peripheral blood mononuclear cells, which also produce granzyme B. Like PI-6, PI-9 was shown to be a cytosolic protein that is not secreted. Fractionation of natural killer cells and stimulated peripheral blood mononuclear cells demonstrated that PI-9 is in a separate subcellular compartment to granzyme B. These results suggest that PI-9 serves to inactivate misdirected granzyme B following cytotoxic cell degranulation. This may explain why cytotoxic cells are not damaged by their own granzyme B during destruction of abnormal cells.

Publication

  • Journal: The Journal of Biological Chemistry
  • Published: 01/11/1996
  • Volume: 271
  • Issue: 44
  • Pagination: 27802-27809