Publications & Reports

Conformational studies of immunodominant myelin basic protein 1-11 analogues using NMR and molecular modeling.

Laimou D, Lazoura E, Troganis AN, Matsoukas MT, Deraos SN, Katsara M, Matsoukas J, Apostolopoulos V, Tselios TV
Department of Chemistry, University of Patras, 26500, Patras, Greece.

Abstract

Tauwo dimensional nuclear magnetic resonance studies complimented by molecular dynamics simulations were conducted to investigate the conformation of the immunodominant epitope of acetylated myelin basic protein residues 1-11 (Ac-MBP(1-11)) and its altered peptide ligands, mutated at position 4 to an alanine (Ac-MBP(1-11)[4A]) or a tyrosine residue (Ac-MBP(1-11)[4Y]). Conformational analysis of the three analogues indicated that they adopt an extended conformation in DMSO solution as no long distance NOE connectivities were observed and seem to have a similar conformation when bound to the active site of the major histocompatibility complex (MHC II). The interaction of each peptide with MHC class II I-A(u) was further investigated in order to explore the molecular mechanism of experimental autoimmune encephalomyelitis induction/inhibition in mice. The present findings indicate that the Gln(3) residue, which serves as a T-cell receptor (TCR) contact site in the TCR/peptide/I-A(u) complex, has a different orientation in the mutated analogues especially in the Ac-MBP(1-11)[4A] peptide. In particular the side chain of Gln(3) is not solvent exposed as for the native Ac-MBP(1-11) and it is not available for interaction with the TCR.

Publication

  • Journal: Journal of Computer-Aided Molecular Design
  • Published: 01/11/2011
  • Volume: 25
  • Issue: 11
  • Pagination: 1019-1032