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ABSTRACT

Dengue has been a major public health concern in the tropical world for decades now. The dynamics
of dengue disease transmission are complex and uncertain due to various external factors such as
climate, human behavior, geography and demography. Fuzzy logic and fuzzy set theory are useful
tools in mathematics to model systems under uncertainty where classical approaches are insufficient.
We are particularly concerned with modeling the potential risk of dengue disease transmission with
respect to climate variables namely, rainfall and temperature. We define fuzzy membership functions
for rainfall and temperature which describe the levels of unfavorable conditions to spread dengue.
Then a modified version of the Einstein Sum Operator is used to measure the overall effect from
rainfall and temperature; hence we obtain a fuzzy valued time series of potential risk produced by
the climate. This risk measure is validated with the actual dengue cases reported in urban Colombo
from year 2006 to 2015. The residuals of the predicted and the real risk of dengue transmission is
less than 0.4 (80% accurate) in 86.77% of the time considered to the study. The sensitivity analysis
of the model is also carried out to investigate how it responses to the measurement errors in the
climate parameters.
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1 INTRODUCTION

Dengue is an important public health problem in
the world mainly in the tropical regions. It has
been an epidemic disease in Sri Lanka now since
it was identified five decades ago. Dynamics
of dengue transmission have changed over the
years mainly in the urban environment. It is
an epidemic disease which is highly sensitive to
climate and human behavior [1]. Some levels of
rainfall support mosquito breeding and increased
temperature levels reduce the incubation period
of mosquitoes and increase the vector capacity
to transmit the dengue virus [2].

Various researchers such as Puntani P. [3]
and Lourdes E et al [4] have discussed the
applicability of classical SIR models in terms
of population dynamics to understand the
dynamics of dengue disease transmission. The
classical SIR models explain the interaction
among of susceptible (S), infected (I) and
recovered (R) human populations together with
the susceptible and infected vector populations.
However, they have used fixed parameter values
in their models so that the influence of external
factors to change the parameters has not
been addressed adequately. The estimation
of these parameters should be done under
uncertainty and the fully stochastic models
are not appropriate since we do not know
the underlying probability distributions. Some
researchers have attempted statistical models
such as time series and Poisson Regression
models but they only have predicted dengue in
relation to changes in single external parameter
such as rainfall, temperature, humidity and wind
speed [5, 6]. Authors in [5] have studied spatio-
temporal patterns of dengue transmission using
long term climate data together with socio-
ecological changes. Results in [6, 7] suggest the
importance of temperature and precipitation in
the transmission of dengue viruses and suggest a
reason for their spatial heterogeneity. However,
their models do not reflect an overall risk
measure of dengue disease when all external
parameters are taken together at different levels.

Fuzzy logic and fuzzy set theory are emerging
areas in mathematical research which provide
valuable and interesting input to model systems
under uncertainty [8]. Fuzzy models in

biology, epidemiology and medicine are having
tremendous capabilities of explaining complex
system behaviors under uncertainties. Plerou
A. and et al have reviewed Fuzzy logic concepts
and their applications to population biology with
an emphasis on epidemiological problems like
causal studies, epidemic models, and designing of
vaccination strategies [9]. A study on including
fuzzy parameters in epidemic modeling using
fuzzy dynamical systems can be found in [10].
The results in [10] are interesting and they
encourage to use fuzzy tools in modeling systems
under uncertainty. There are some studies
can be found discussing the applicability of
fuzzy logic to Infectious Disease Diagnosis with
the aid of Computer Science. Prihatini P.M.
and et al develop an expert system combines
the method of Fuzzy Logic and Certainty
Factors with the object of research is a disease
of tropical infectious diseases include Dengue
Fever, Typhoid Fever and Chikungunya [11].
However, direct applications in modeling dengue
disease transmission using fuzzy tools are not
frequently availble in literature.

There are basically two objectives of this paper.
The first aim is to model the influence of
rainfall and temperature to create unfavorable
environmental conditions for the spread of
dengue disease in urban Colombo. We use
fuzzy set theory to investigate the influence
from eight weeks leading rainfall (RF) and
the weekly averaged maximum temperature
(TEMP) for dengue transmission [6]. The
membership functions for weekly average rainfall
with eight week lead time and weekly average
maximum temperature are defined with the
degree of membership value in [0, 1] as
the response variable which is the effect
from each variable respectively to establish
unfavorable environmental conditions for dengue
transmission. A modified version of the Einstein
fuzzy operator is used to measure the combined
effect from above factors. This operator
overcomes the disadvantages of the Hamacher
operator; another widely used fuzzy operator
to combine two fuzzy membership values [12].
The Hamacher operator computes the combined
effect to be zero if one individual membership
value is zero no matter how much the other
membership value is. For an example if the RF is
totally favorable (membership = 0) while TEMP
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is slightly favorable (membership > 0) then
the Hamacher operator produces a membership
value of zero which implies a totally favorable
climate condition for dengue transmission and is
sometimes misleading.

The value in [0, 1] computed by the new
operator describes the overall effect from climate
to create an unfavorable environmental condition
for dengue transmission and does not reflect the
risk directly. Therefore we transform the value
to have a potential risk measure by subtracting
it from one. The dengue cases are standardized
and they are transformed to a time series in [0,
1]. The error function is obtained by comparing
the predicted risk by the fuzzy model and the
risk described by the standardized real dengue
cases. Here we argue that the predicted risk at
time t is a potential risk measure to understand
the real risk in a future time t + j for any
j ∈ [0, T ] where T is the size of the time series.

It is known that temparature and rainfall data
are subject to measurement errors. If these
data are not accurate then the fuzzy model may
produce inaccurate results and they may lead
to wrong conclusions. Therefore a sensitivity
analysis of the model is carried out to investigate
how the results change in response to small
variations in the climate parameters. We assume
that these measurement errors of the climate
parameters are random process each of them are
uniformly distributed in fairly small intervals.
This measurement errors are additively included.
Again the a accuracy of the the fuzzy risk
measure is investigated.

2 METHODOLOGY

2.1 Mathematical Preliminaries

Definition 1. Let U be a non-empty set and A,
a subset of U. The characteristic function of A is
given by

A(x) =

{
1, if x ∈ A;

0, if x /∈ A;
(2.1)

Definition 2. A fuzzy subset F of U is described
by the function F : U → [0, 1] called the
membership function of fuzzy set F where U
is a classical non-empty set.

The value F (x) ∈ [0, 1] indicates the membership
degree of the element x of U in fuzzy set F,
with F (x) = 1 and F (x) = 0 representing,
respectively, the belongingness and not-
belongingness of x in F [8, 13].

Definition 3. If A is a fuzzy subset of X then
the α-cut is defined as the non-fuzzy subset such
that [14]

Aα = {x|Uα(x) ≥ α} for 0< α ≤1 (2.2)

Definition 4. The intersection of A and B,
denoted A ∩ B, is defined on the largest fuzzy
set contained in both A and B, given by the
membership function

UA∩B(x) = min{UA(x), UB(x)} for each x ∈ F .
(2.3)

The union of A and B, denoted A∪B, is defined
on the smallest fuzzy set contained in both A
and B,given by the membership function

UA∪B(x) = max{UA(x), UB(x)} for each x ∈ F .
(2.4)

The Einstein sum is defined as [15]

UES(x) =
UA(x) + UB(x)

1 + UA(x) · UB(x)
. (2.5)

Definition 5. A fuzzy set is concentrated by
reducing the grade of membership of all elements
that are only partly in the set, in such a way
that the less an element is in the set, the
more its grade of membership is reduced. The
concentration of a fuzzy set A can be defined by
[14]

UCONC(A)(x) = UaA(x) with a > 1. (2.6)

The opposite of the concentration is the dilation.
A fuzzy set is dilated or stretched by increasing
the grade of membership of all elements that are
partly in the set. The dilation of a fuzzy set A
can be defined by [14]

UDIL(A)(x) = UaA(x) with a < 1. (2.7)

2.2 Mathematical Models

We assume that at least 5mm averaged weekly
rainfall is required to make breeding sites
available for mosquitoes and the breeding sites
are washed out due to the heavy rainfall which
is over 55mm [5, 16, 17]. Further it is assumed
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that a weekly average temperature less than
160C is unfavorable for mosquitoes to transmit
the virus and a temperature between 300C and
340C is ideal for mosquitoes to rapidly transmit
of the virus due to the increased vector capacity
and reduced incubation period [18]. According
to literature extreme heating conditions do
not support dengue virus transmission so that
we assume the threshold temperature to be
370C [5, 16, 18]. Based on these conditions,
the trapezoidal-shaped membership functions
URF (x) : A ⊆ R → [0, 1] and URF (x) : B ⊆
R → [0, 1] are defined respectively to represent
the effect from eight weeks leading RF and
immediate TEMP to create an unfavorable
environment for dengue as

URF (x) =



1, if x ≤ 5;

−x+10
5
, if 5 ≤ x ≤ 10;

0, if 10 ≤ x ≤ 30;
x−30
25

, if 30 ≤ x ≤ 55;

1, if x ≥ 55;

(2.8)

UTEMP (x) =



1, if x ≤ 16;

−x+30
14

, if 16 ≤ x ≤ 30;

0, if 30 ≤ x ≤ 34;
x−34

3
, if 34 ≤ x ≤ 37;

1, if x ≥ 37;

(2.9)

The trapezoidal-shaped membership functions
given in (2.8) and (2.9) are illustrated in Fig 1a
and Fig 1b respectively.
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Fig. 1. Memebership functions
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2.2.1 Fuzzy operators

It should be noted that the parameters rainfall
and temperature considered separately do not
provide any measure of climate risk for dengue
transmission. Further the two parameters are in
two different scales. Therefore we need to find
a technique to combine these two parameters
and get them into a single scale. The theory
of fuzzy operators overcomes this problem.
The methodology of transforming two climate
parameters into fuzzy measure and obtaining a
single risk measure is illustrated in Fig 2.

We define the modified operator which computes
the overall effect as a function UMES(x) : ([0, 1]×
[0, 1])→ [0, 1] given by

UMES(x) =
U2
RF (x) + U2

TEMP (x)

1 + URF (x) · UTEMP (x)
. (2.10)

It is obviously seen that,

• If URF (x) = 0 and UTEMP (x) = 0 then
UMES(x) = 0.

• If URF (x) = 0 and UTEMP (x) 6= 0 then
UMES(x) = U2

TEMP (x) ≤ UTEMP (x) or
if UTEMP (x) = 0 and URF (x) 6= 0 then
UMES(x) = U2

RF (x) ≤ URF (x).

Further it can be shown that if UTEMP (x) <
URF (x) then UMES(x) < URF .
The overall climate risk with respect to different
levels of rainfall and temperature are given in Fig
3.

Then we define the potential risk of dengue
transmission again as a function
M : ([0, 1]× [0, 1])→ [0, 1] given by

M(x) = 1− UMES(x). (2.11)

Fig. 2. The schematic diagram of transforming parameters into a single
risk measure
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Fig. 3. The overall effect of climate risk for dengue transmission
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3 DATA AND ANALYSIS

We use daily rainfall and maximum temperature
data in urban Colombo from year 2006 to
2015 which obtained from the department
of meteorology and transformed into average
weekly data for the above two parameters.
The weekly dengue cases data are standardized
in such a way that each number of weekly
dengue cases in a particular year is divided by
the maximum number of weekly dengue cases
incurred in the same year. The standardized
dengue cases are identified as the real risk of
dengue transmission denoted by Ds

t ∈ [0, 1].

3.1 Error Analysis

It is understood that the predicted risk at time t
should be realted to the real dengue risk reflected
by dengue cases in a future interval of time
[t, t + j] for any j ∈ [0, T ] where T is the size
of the time series. We define the mapping from
predicted potential risk to a cluster of real risk
of dengue as ft : [0, 1] → [0, 1][t,t+j] for any
j ∈ [0, T ] and given by

ft(Mt) = Ds
t′∈[t,t+j]

where |Ds
t′ −Mt| = inf |Ds

t −Mt|
for any t, t′ ∈ [t, t+ j]. (3.1)

The error function is defined as

et = |ft(Mt)−Mt|. (3.2)

Dengue is an epidemic disease attributed with a
complex transmission dynamics. A model which
predicts the dengue risk for a level of accuracy
of et ≤ 0.1 would be totally effective to establish
an early warning system. Based on the cluster of
real risk of dengue, the level of accuracy of the
model At is defined as follows.

At =


100%, if et ≤ 0.1;

90%, if 0.1 < et ≤ 0.25;

80%, if 0.25 < et ≤ 0.4;

50%, if et > 0.4;

(3.3)

4 SENSITIVITY ANALYSIS

Climate data are subject to measurement errors.
Therefore it is very important to investigate how
our fuzzy model for climate risk responses to
these errors. The impact of the measurement

errors in the climate parameters should not be
significantly large for the final results from the
model. We carry out a sensitivity analysis to
investigate how the fuzzy model reacts to a small
change in the parameters.

It should be noted that the measurement errors
of the climate parameters are not fixed with
respect to time. We assume they are uniformly
distributed random variables. Now we adjust our
two parameters such that

RFadj(t) = max[0, RF (t) + δ1(t)] and
TEMPadj(t) = TEMP (t) + δ2(t)

where δ1(t) ∼ uni[−2, 2] and δ2(t) ∼
uni[−0.5, 0.5] for each t. Here we assume that
the rainfall is measured to the nearest 2mm and
the temperature is measured to the nearest 0.5
degrees of celsius. The adjusted parameters are
also transformed to fuzzy measures in [0, 1] using
the same fuzzy membership functions given in
(2.8) and (2.9). Again the accuracy of the model
to predict the real risk of dengue transmission
in urban Colombo is investigated using the
algorithm introduced in section ??.

5 RESULTS AND DIS-

CUSSION

The dengue cases time series from year 2006-
2015 is presented in Fig 4. The trend in
the dengue cases data is removed using the
methodology described early in this paper and
the resulted time series is given in Fig 5 which
gives the real risk of dengue from year 2006-
2015. The predicted potential risk of dengue
transmission from RF and TEMP is computed
using the Modified Einstein Sum operator and its
behavior is shown in Fig 6. The error variation
between the real risk and the predicted potential
risk is illustrated in Fig 7.

The real risk time series seems to be highly
non stationary as it is expected that the
epidemiological data are noisy due to its
complexity. The predicted potential risk time
series attains to either 0 or 1 number of times
and this implies for certain time points the risk
is very high or no risk at all.
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Fig. 4. The weekly dengue cases distribution from year 2006-2015
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Fig. 5. The real risk of dengue cases distribution from year 2006-2015
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Fig. 6. The predicted potential risk distribution of dengue transmission
from year 2006-2015

We argue that the risk predicted from the model
for time t can be used to have an idea about
the real dengue risk for further j time periods,
that is up to time t + j. We set j equals to
approximately 2 months. This method is useful
in epidemic modeling since the predicted risk
in a certian time must be taken to implement
control strategies in a future time. Based on this
mapping algorithm, the accuracy of our model

is investigated. It is observed from the analysis
that, 42.80% of the time the level of accuracy
is 100 percent, 26.46% of the time the level of
accuracy is 90 percent and 16.15% of the time it
is 80 percent. Generally the level of accuracy of
the model is more than 80 percent in 86.77% of
the time considered in the study.
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We carry out the sensitivity analysis of the model to investigate how the system responses to a small
change in the climate parameters according to the method described in section ??. The sensitivity
analysis suggests that 44.75% of the time the level of accuracy is 100 percent. Generally the level
of accuracy of the model is more than 80 percent in 87.55% of the time considered in the study.
These results suggest that the model responses well to the small changes in the values of the two
climate parameters. Thus the measurement errors do not have a significant impact on the model
outcomes. The accracy of the model after the sensitivity analysis is given in Fig 8.

Fig. 7. The level of accuracy of the model from year 2006-2015

Fig. 8. The sensitivity of the model

6 CONCLUSIONS

Fuzzy set theory can be highly useful when
modeling and analyzing uncertain, complex
systems such as disease spread. Theory of
fuzzy operators can be used to investigate
the overall potential risk of dengue disease
transmission from several sensitive parameters
such as rainfall and temperature. The overall
effect from rainfall and temperature to produce
unfavorable environmental conditions for dengue
transmission is computed in the first phase
using the modified Einstein Sum operator.
The predicted potential risk is evaluated by

subtracting this measure of unfavorability
from one. The standardized dengue cases are
identified as the real risk of dengue transmission
and the accuracy of the model is investigated
using the algorithm described in the data and
analysis section. However we observe that the
predicted potential risk is overestimated for
certain weeks and it is underestimated for some
weeks. The underestimation of the predicted risk
might be due to the fact that, we only considered
the influence of rainfall and temperature in
the model. Human mobility, demography and
geography are other vital factors which are
sensitive for the dynamics of dengue disease
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transmission. We aim at modeling the risk of
dengue transmission with respect to climate and
this risk is implicitly described by the mosquito
density and its spread. Eventhough a some
level of risk is predicted by the model, the real
dengue cases do not reflect the actual risk may
be because people use various techniques to
avoid mosquito contacts by using insecticides,
bed nets and etc. However we observe from the
analysis that the model is more than 80 percent
accurate in 86.77% of the time. A sensitivity
analysis is carried out to investigate the impact
of the measurement errors to the outcomes og
the fuzzy model of climate risk. The analysis
suggests that the model responses well to these
errors in the data collection.

Dengue is an epidemic disease with an extremely
complicated transmission process. Large number
of various factors influencing its transmission in
different levels in different times. A neutral
factor in a particular period of time can be
dominant in a different time period. An
expanded model based on the methodology
discussed in this paper with the consideration
of other factors such as human mobility,
demography and geography can be useful in
predicting the risk even more accurately.
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