Appendix: Description of the mathematical model, parameter values, cost data, and sensitivity analyses

Description of mathematical model	1
Equations	3
Model parameters	14
Healthcare costs and health utilities	
Model outcomes versus available data	
Summary of economic results	
Results from sensitivity analyses	
References	

Description of mathematical model

A mathematical model was developed to estimate HIV and HCV incidence and other disease outcomes. Our model tracks the population of people who inject drugs and it was formulated to describe the change in the number of people in different disease states over time. The model tracks the entry of new injectors into the uninfected population and those who die due, by health state, over time. All parameter values were estimated based on published literature and available data from Australian reports and databases.

A schematic diagram of compartments in the HIV and HCV transmission model for inject drug users (IDUs) is presented in Figure 2 of the main manuscript. The change in the number of people in each compartment was tracked mathematically by formulating a system of ordinary differential equations. Twenty-one compartments represent IDUs who are infected with HIV: CD4+ T cell levels (>500 cells per μ l, 350-500 cells per μ l, 200-350 cells per μ l, and <200 cells per μ l) for both diagnosed and undiagnosed; then HIV diagnosed individuals may initiate antiretroviral therapy for first-line treatment; those who failed treatment may receive second-line treatment. The description of health states are shown in Table A.1. Twenty-two compartments represent IDUs who are infected with HCV: in acute stage, fibrosis stages F0, F1, F2, F3, and F4, whether they are diagnosed, undiagnosed or receiving treatment. People infected with HCV who have advanced fibrosis can progress to clinical outcomes of liver failure or hepatocellular carcinoma, or can receive a liver transplant. It is assumed that individuals who progress to these three clinical outcomes no longer receive HCV treatment due to the severity of their health status. Coinfection is not considered in this model.

Table A.1: Number of compartments in HIV/HCV.

HIV		HCV	
1.	Uninfected HIV	1. Ur	ninfected HCV
2-5.	Infected, Undiagnosed (CD4>500, CD4 350-500,	2-7. In	nfected, Undiagnosed (Acute, F0-F4)
	CD4 200-550, CD4<200)		
6-9.	Infected, Diagnosed (CD4>500, CD4 350-500, CD4	8-13. In	nfected, Diagnosed (Acute, F0-F4)
	200-350, CD4<200)		
10-13	. Infected, 1stline ART (CD4>500, CD4 350-500,	14-19. lr	nfected, Treatment (Acute, F0-F4)
	CD4 200-350, CD4<200)		
14-17	. Infected, Failure of ART (CD4>500, CD4 350-500,	20-22. Li	iver failure, hepatocellular carcinoma, liver
	CD4 200-350, CD4<200)	ti	ransplant
18-21	. Infected, 2ndline ART (CD4>500, CD4 350-500,		
	CD4 200-350, CD4<200)		

An ordinary differential equation (ODE) was developed to describe the change in the number of people in each of these compartmental health states over time; since there is one ODE for each compartment, there were 43 ODEs in total. The rate of change in the numbers of people in each compartment depends on the net rates of people entering and leaving the health state. Each ODE was mathematically described based on standard translation from the schematic diagram of the model presented in Figure 2 of the main manuscript [1] (with the addition of rates of initiation of injecting and leaving the population (background death/migration/cessation of injecting, drug-related death, health state-specific death). For example, the ODE representing the rate of change in the number of people uninfected with HIV can be written as following:

$$\frac{Change in uninfecteds}{dS} = \pi - \begin{pmatrix} Force of Background Drug-related HIV infection death death \\ \lambda + \mu + \mu_D \end{pmatrix} S$$

where S is the number of uninfected active IDUs, π is the annual number of people who commence injecting drugs, μ is the mortality rate among general population, μ_D is the drug-related death rate, and λ is the 'force of infection' or per-capita rate at which susceptible IDUs acquire infection.

The force of infection is the only rate between health states to be dependent on other health states (namely, numbers of people in the infected health states). To calculate the force of infection, we assume that each IDU injects an average of n times per year and denote the receptive syringe sharing rate (RSS) as s and the prevalence in the population as P(t). The probability of infection from a contaminated syringe per use is denoted by β . We assume that syringe cleaning has effectiveness ε_c and cleaning occurs in p_c proportion of shared injections. Given these definitions, the force of infections is given mathematically by:

$$\lambda = (1 - (1 - (1 - p_c \varepsilon_c)\beta)^{ns})P.$$

Equations

HIV-infected individuals

Susceptible

Undiagnosed

Change in uninfecteds Force of HIV infection Entry into Background Drug-related death population death dS $\lambda_{_{HIV}}$ S μ + μ_D = π dt

Change in infecteds (200<CD4<350, Undiagnosed) HIV-related Progress from 350<CD4<500 Progress to CD4<200 Testing rate (200<CD4<350) Background Drug-related death (200<CD4<350) death death dI_{200350}^{U} $au_{350500}I^U_{350500}$ I^{U}_{200350} ++ $\mu_{\rm 200350}$ $\eta_{\rm 200350}$ μ μ_D + τ_{200350} +dt

$$\frac{dI_{200}^{U}}{dt} = \tau_{200350}^{U} I_{200350}^{U} - \begin{pmatrix} Background & Drug-related & HIV-related & Testing rate \\ death & death & death & (CD4<200) \\ \mu + \mu_D + \mu_{200} + \eta_{200} \end{pmatrix} I_{200}^{U} I_{200}^{U}$$

Diagnosed

Change in

Change in infecteds
(CD4-500)

$$\frac{dI_{500}^{D}}{dt} = \overline{\eta_{500}}I_{500}^{U} - \left(\begin{array}{c} Background \\ Background \\ (CD4-500) \\ \mu + \mu_{D} + \mu_{D} + \mu_{500} + \tau_{500} + \overline{\sigma_{500}} + \overline{\sigma_{500}} \right)^{U}_{500} \right)^{U}_{500}$$
Change in infecteds
(CD4-500)

$$\frac{dI_{500}^{D}}{dt} = \overline{\tau_{500}}I_{500}^{D} + \overline{\eta_{35050}}I_{35050}^{U}_{350500} \right)^{U}_{350500}$$
Change in infecteds
(CD4-500)

$$\frac{dI_{500}^{D}}{dt} = \overline{\tau_{500}}I_{500}^{D} + \overline{\eta_{35050}}I_{35050}^{U}_{350500} \right)^{U}_{350500} + \overline{\eta_{350500}}I_{350500}^{U}_{350500} \right)^{U}_{350500} + \overline{\tau_{350500}} + \overline{\tau_{350500}} + \overline{\tau_{350500}}I_{350500}^{U}_{350500} \right)^{U}_{350500} + \overline{\eta_{350500}}I_{350500}^{U}_{200500} + \overline{\eta_{350500}}I_{350500}^{U}_{200500} + \overline{\eta_{350500}}I_{350500}^{U}_{200500} + \overline{\tau_{350500}} + \overline{\tau_{350500}}I_{350500}^{U}_{350500} \right)^{U}_{350500} + \overline{\eta_{350500}}I_{350500}^{U}_{200500} + \overline{\eta_{350500}}I_{200500}^{U}_{200500} + \overline{\eta_{350500}}I_{200500}^{U}_{200500}^{U}_{20050} + \overline{\eta_{350500}}$$

First-line treatment

Change in infecteds (CD4>500) during 1st treatment

Change in infecteds (350<CD4<500) during 1st treatment

$$\frac{dI_{350500_{lst}}}{dt} = \sigma_{350500} I_{350500} I_{350500} I_{350500} I_{350500} I_{200350} I_{20050} I_{20050} I_{20050} I_{20050} I_{2005$$

Change in infecteds (200<CD4<350) during 1st treatment

$$\frac{dI_{200350_{Ist}}}{dt} = \sigma_{200350} I_{200350} I_{2005} I_{2005} I_{2005} I_{2005}$$

$$-\left(\begin{array}{c} Background Drug-related death (on ART) (200 < CD4 < 350) \\ \mu + \mu_D + \mu_T + \phi_{200350} + \omega_{200350} \end{array}\right) I_{200350_{1st}}$$

Change in infecteds (CD4<200) during 1st treatment

 $\overline{}$

$$\frac{dI_{200_{lst}}}{dt} = \overbrace{\sigma_{200}I_{200}}^{Commenced 1st line} + free therapy (CD4<200)} = \overbrace{\sigma_{200}I_{200}}^{D} + \underbrace{\sigma_{200}I_{200}}^{HIV-related} + free therapy (CD4<200)}_{death} + \underbrace{\sigma_{200}I_{200}}^{Viral supression} + \underbrace{\sigma_{200}I_{200}}^{Viral supression} + \underbrace{\sigma_{200}I_{200}}^{Viral supression} + \underbrace{\sigma_{200}I_{200}}^{HIV-related} + \underbrace{\sigma_{200}I_{200}}^{HIV-related} + \underbrace{\sigma_{200}I_{200}}^{Viral supression} + \underbrace{\sigma_{200}I_{200}}^{Viral supression} + \underbrace{\sigma_{200}I_{200}}^{HIV-related} + \underbrace{\sigma_{200}I_{200}}^{HIV-related} + \underbrace{\sigma_{200}I_{200}}^{Viral supression} + \underbrace{\sigma_{200$$

Treatment failure

Change in treatment failure infecteds

_

$$\begin{aligned} (CD4>500) & Viral rebound \\ during 1st line therapy \\ (CD4>500) \\ (SD0CD4<500) \\ (SD0CD4<50) \\ Viral rebound \\ during 1st line therapy \\ (SD0CD4>500) \\ Ist line treatment failure \\ (SD0CD4>500) \\ Ist line treatment failure \\ (SD0CD4>500) \\ (SD0CD4>500) \\ Ist line treatment failure \\ (SD0CD4>500) \\ (SD0CD4>500) \\ Ist line treatment failure \\ (SD0CD4>500) \\ (SD0CD4>500) \\ Ist line treatment failure \\ (SD0CD4>500) \\ (SD0CD4>500) \\ Ist line treatment failure \\ (SD0CD4>500) \\ (SD0CD4>500) \\ Ist line treatment failure \\ (SD0CD4>500) \\ Viral rebound \\ Wiral rebound \\ Wiral rebound \\ Viral r$$

Change in treatment failure infecteds (CD4<200)

$$\frac{dI_{200_{Fail}}}{dt} = \overbrace{\phi_{200}I_{200_{Ist}}}^{Viral rebound} \qquad Viral rebound}_{Uring 2nd line therapy} \underbrace{Viral rebound}_{Uring 2nd line therapy} \underbrace{Viral rebound}_{Uring 2nd line therapy} \underbrace{Progress from}_{200 < CD4 < 350 after}_{Treatment failure}}_{Treatment failure} = \overbrace{\phi_{200}I_{200_{Ist}}}^{Viral rebound} + \overbrace{\phi_{200}S_{I}I_{200_{2nd}}}^{Viral rebound} + \overbrace{\tau_{200350}F_{ail}}^{Progress from}_{200 < CD4 < 350 after}_{Treatment failure}}_{-\left(\begin{matrix}Background\\death\end{matrix}\right) + \begin{matrix}\mu_D & + \end{matrix}\right)_{D} + \mu_T & + \begin{matrix}\sigma_{200}\\death\end{matrix}\right)_{I_{200_{Fail}}}^{Viral rebound}}$$

Change in infecteds (200<CD4<350) on 2nd line treatment

$$\frac{dI_{200350_{2nd}}}{dt} = \underbrace{\delta_{200350}I_{200350_{Fail}}}_{Quidented for the rapy} + \underbrace{\omega_{200}I_{200_{2nd}}}_{Quidented for the rapy} + \underbrace{\omega_{200,200}I_{200_{2nd}}}_{Quidented for the rapy} + \underbrace{\omega_{200,200}I_{200_{2nd}}}_{Quidented for the rapy} + \underbrace{\omega_{200,200_{2nd}}}_{Quidented for the rapy} + \underbrace{\omega_{200,200_{2$$

Change in infecteds (CD4<200) on 2nd treatment

HCV-infected individuals

Susceptible

Undiagnosed

$$\frac{dI_{A}^{U}}{dt} = \lambda_{HCV}S - \begin{pmatrix} Background & Drug-related & Spontaneoous & Progress to & Testing rate \\ death & death & clearance of HCV & F0 & (acute) \\ \mu & + & \mu_{D} & + & \psi & + & \tau_{A} & + & \sigma_{A} \end{pmatrix} I_{A}^{U}$$

Change in
F0 infecteds Progress from

$$acute$$

 $\frac{dI_{F0}^{U}}{dt} = \tau_{A}I_{A}^{U} - \begin{pmatrix} Background Drug-related Testingrate Progress to \\ death death (F0) F1 \\ \mu + \mu_{D} + \sigma_{F0} + \tau_{F0} \end{pmatrix} I_{F0}^{U}$

$$\frac{dI_{F1}^{U}}{dt} = \overbrace{\tau_{F0}I_{F0}}^{Change in} - \begin{pmatrix} Background & Drug-related & Testing rate & Progress to \\ death & death & (F1) & F2 \\ \mu & + & \mu_D & + & \sigma_{F1} & + & \tau_{F1} \end{pmatrix} I_{F1}^{U}$$

$$\frac{Change in}{F2 infecteds} \operatorname{Progress from}_{F1} \left(\frac{dI_{F2}^{U}}{dt} \right) = \tau_{F1}I_{F1}^{U} - \left(\begin{array}{ccc} \operatorname{Background} & \operatorname{Drug-related} & \operatorname{Testingrate} & \operatorname{Progress to} \\ \operatorname{death} & \operatorname{death} & (F2) & F3 \\ \mu & + \mu_{D} & + \sigma_{F2} & + \tau_{F2} \end{array} \right) I_{F2}^{U}$$

$$\frac{dI_{F3}}{dt} = \overbrace{\tau_{F2}I_{F2}}^{Progress from} - \begin{pmatrix} Background & Drug-related & Testingrate & Progress to \\ death & death & (F3) & F4 \\ \mu & + & \mu_D & + & \sigma_{F3} & + & \tau_{F3} \end{pmatrix} I_{F3}^U$$

$$\frac{dI_{F4}^{U}}{dt} = \overbrace{\tau_{F3}I_{F3}^{U}}^{F3} - \left(\begin{array}{c} Background & Drug-related & Testingrate & Progress to \\ death & death & (F4) & liver failure & HCC \\ liver failure & HCC & HCC \\ \mu + \mu_D + \sigma_{F4} + \tau_{F4LF} + \tau_{F4HCC} \end{array}\right) I_{F4}^{U}$$

Diagnosed

$$\frac{dI_{A}^{D}}{dt} = \sigma_{A}I_{A}^{U} + (1 - \gamma_{A})\nu_{A}I_{A}^{T}$$

$$= \frac{dI_{A}^{D}}{dt} = \sigma_{A}I_{A}^{U} + (1 - \gamma_{A})\nu_{A}I_{A}^{T}$$

$$- \begin{pmatrix} Background & Drug-related & Spon \tan eoous & Progress to & Commence \\ death & death & clearance of HCV & F0 & treatment (acute) \\ \mu + \mu_{D} + \psi + \tau_{A} + \eta_{A} \end{pmatrix} I_{A}^{D}$$

$$Change in acute infecteds & Diagnosed & Cease treatment & (Background & Drug related & Progress to & Commence \\ death & Change in acute infected & Diagnosed & Cease treatment & (Background & Drug related & Progress to & Commence \\ \end{pmatrix}$$

$$\frac{dI_{F0}^{D}}{dt} = \overbrace{\sigma_{F0}I_{F0}^{U}}^{(F0)} + \overbrace{(1-\gamma_{F0})}^{(F0)} v_{F}I_{F}^{T} - \left(\begin{array}{c} Background & Drug-related & Progress to & Commence \\ death & death & F1 & treatment (F0) \\ \mu + \mu_{D} + \tau_{F0} + \eta_{F0} \end{array}\right) I_{F0}^{D}$$

 $\frac{dI_{F1}^{D}}{dt} = \overbrace{\sigma_{F1}I_{F1}^{U}}^{Diagnosed} + \overbrace{\tau_{F0}I_{F0}}^{Progress from} + \overbrace{(I-\gamma_{F})\nu_{F}I_{F1}}^{Cease treatment}$ $-\begin{pmatrix}Background & Drug-related & Commence & Progress to \\ death & death & treatment (F1) & F2 \\ \mu & + & \mu_D & + & \eta_{F1} & + & \tau_{F1} & I_{F1}^D \\ \end{pmatrix}$

Change in F2 infecteds

Change in

F3 infecteds

$$F3 infecteds$$
 Diagnosed Progress from Cease treatment
 $(F3)$ $(F3)$ $(F3)$ $(F3)$ $(F3)$ $(F3)$ $(F3)$ $(F3)$ $(F3)$
 $\frac{dI_{F3}^{D}}{dt} = \overline{\sigma_{F3}}I_{F3}^{U} + \overline{\tau_{F2}}I_{F2}^{D} + (1 - \gamma_{F})\nu_{F}I_{F3}^{T}$
 $-\begin{pmatrix} Background Drug-related Commence treatment (F3) & F4 \\ \mu + \mu_{D} + \eta_{F3} + \overline{\tau_{F3}} & I_{F3}^{D} \end{pmatrix}$

Change in
F4 infecteds
$$\frac{dI_{F4}^{D}}{dt} = \overbrace{\sigma_{F4}I_{F4}^{U} + \tau_{F3}I_{F3}^{D}}^{Cease treatment} + (1 - \gamma_{F})\nu_{F}I_{F4}^{T}}$$

$$- \left(\begin{array}{c} Background & Drug-related & Commence \\ death & death & treatment (F3) \\ \mu & + \mu_{D} & + \eta_{F4} & + \tau_{F4LF} + \tau_{F4HCC} \end{array}\right)I_{F4}^{D}$$

Receiving HCV treatment

Change in acute infecteds on treatment $\left(\begin{array}{ccc} Background & Drug-related & Cease treatment \\ death & death & (F4) \end{array} \right)$ Commenced Viral clearance Progress to F0 treatment (acute) on treatment (acute) during treatment $\frac{dI_A^T}{dt}$ $\overline{\tau_A^T}$ $\eta_A I_A^D$ μ + μ_D + $(1 - \gamma_A)v_A$ + $\gamma_A v_A$ + I_A^T =

Change in F0

infecteds on treat

$$\frac{dI_{F0}^{T}}{dt} = \tau_{A}^{T}I_{A}^{T} + \eta_{F0}^{Commenced}$$

Change in F1 infecteds on treatment

$$\begin{array}{c} \begin{array}{c} {} Progress\,from\,F0}\\ {} during\,treatment}\end{array} & {} \begin{array}{c} {} Commenced\\ {} treatment\,(F1)}\end{array} \\ \\ \overline{\tau_{F0}^T I_{F0}^T} & + & \eta_{F1} I_{F1}^D\end{array} \end{array}$$

$$\frac{dI_{F1}^{T}}{dt} =$$

Change in F2 infecteds on treatment

$$\frac{dI_{F2}^{T}}{dt} = \tau_{F1}^{T}I_{F1}^{T} + \eta_{F2}^{Commenced}$$

$$\frac{dt}{dt}$$

Change in F3

infecteds on Progress from F2 Commenced during treatment treatment (F3) treatment $\frac{dI_{F3}^{T}}{dt}$ $\overline{\tau_{F2}^T I_{F2}^T} + \overline{\eta_{F3}} I_{F3}^D$ =

$$-\begin{pmatrix}Background & Drug-related \\ death & death \\ \mu & + \\ \mu_D & + (1 - \gamma_F)\nu_F + \\ \hline \gamma_F \nu_F & + \\ \hline \gamma_F \nu_F & + \\ \hline \gamma_F \nu_F & + \\ \hline \tau_{F3}^T \\ \hline I_{F3}^T \\ \hline I_{F$$

Change in F4

infecteds on Progress from F3 Commenced treatment during treatment treatment (F4) $\frac{dI_{F4}^{T}}{dt} = \widetilde{\tau_{F3}^{T}}I_{F3}^{T} + \widetilde{\eta_{F4}}I_{F4}^{D}$ $\begin{pmatrix} Background & Drug-related \\ death & death \\ \mu & + & \mu_D \\ \end{pmatrix} \begin{pmatrix} Cease \ treatment \\ (F4) \\ F4 \end{pmatrix} Viral \ clearance \\ on \ treatment \ (F4) \\ \gamma_F V_F \\ F4 \end{pmatrix}$ —

Change in liver failure infecteds

$$\frac{dI_{LF}}{dt} = \overline{\tau_{F4LF}I_{F4}^{U}} + \overline{\tau_{F4LF}I_{F4}^{D}} - \begin{pmatrix} Background & Liver failure \\ death & related death \\ \mu & + \mu_{LF} & + \overline{\tau_{LFHCC}} + \overline{\tau_{LFLT}} I_{LF} \\ \mu & \mu_{LF} & + \overline{\tau_{LFHCC}} + \overline{\tau_{LFLT}} I_{LF} \\ \mu & \mu_{LF} & \mu_{LF} & \mu_{LF} & \mu_{LF} \\ \mu & \mu_{LF} & \mu_{LF} & \mu_{LF} & \mu_{LF} \\ \mu & \mu_{LF} & \mu_{LF} & \mu_{LF} & \mu_{LF} \\ \mu & \mu_{LF} & \mu_{LF} & \mu_{LF} & \mu_{LF} \\ \mu & \mu_{LF} & \mu_{LF} & \mu_{LF} & \mu_{LF} \\ \mu & \mu_{LF} & \mu_{LF} & \mu_{LF} & \mu_{LF} \\ \mu & \mu_{LF} & \mu_{LF} & \mu_{LF} & \mu_{LF} \\ \mu & \mu_{LF} & \mu_{LF} & \mu_{LF} & \mu_{LF} \\ \mu & \mu_{LF} & \mu_{LF} & \mu_{LF} & \mu_{LF} \\ \mu & \mu_{LF} & \mu_{LF} & \mu_{LF} & \mu_{LF} & \mu_{LF} \\ \mu & \mu_{LF} & \mu_{LF} & \mu_{LF} & \mu_{LF} & \mu_{LF} \\ \mu & \mu_{LF} & \mu_{LF} & \mu_{LF} & \mu_{LF} & \mu_{LF} \\ \mu & \mu_{LF} & \mu_{LF} & \mu_{LF} & \mu_{LF} & \mu_{LF} & \mu_{LF} \\ \mu & \mu_{LF} \\ \mu & \mu_{LF} & \mu_{LF$$

$$\frac{dI_{HCC}}{dt} = \underbrace{\tau_{F4HCC}}^{Change in}_{F4} I_{F4}^{U} + \underbrace{\tau_{F4HCC}}^{Progress from F4}_{F4} + \underbrace{\tau_{F4HCC}}^{Progress from F4}_{F4} + \underbrace{\tau_{F4HCC}}^{Progress from LF}_{F4} - \begin{pmatrix} Background & HCC & Progress to \\ death & related death & LT \\ \mu & + \mu_{HCC} & + \tau_{HCCLT} \end{pmatrix} I_{HCC}$$

$$\frac{dI_{LT}}{dt} = \overline{\tau_{LFLT}} I_{LF} + \overline{\tau_{HCCLT}} I_{HCC} - \begin{pmatrix} Background & Liver transplant \\ death & related death \\ \mu & + \mu_{LT} \end{pmatrix} I_{LT}$$

Model parameters

Table A.1: Model parameters related to HIV

Symbol	Description	Values	References
Transmission		I	
$eta_{ ext{HIV}}$	Transmission probability of HIV per injection with a contaminated syringe	0.6-0.8%	[2, 3], <i>a</i>
r	Effectiveness of ART	50-80%	[4-10]
Testing rate			
η	Proportion of individuals that received HIV test every year	48-66%	[11]
Disease progres	ssion of individuals without treatment		
$1/\tau_{CD4>500}$	Average time for HIV-infected individuals to progress from CD4 count >500 to CD4 count 350-500	4.09 (3.79-4.42) years	[12], b
$1/\tau_{350 < CD4 < 500}$	Average time for HIV-infected individuals to progress from CD4 count 350-500 to CD4 count 200-350	1.96 (1.81-2.13) years	
$1/\tau_{200 < CD4 < 350}$	Average time for HIV-infected individuals to progress from CD4 count 200-350 to CD4 count <200	1.96 (1.81-2.13) years	
Disease progres	ssion on treatment (viral suppression)		
$1/\omega^{U}_{CD4<200}$	Average time for HIV infected individuals on ART to progress from CD4 count <200 to CD4 count 200-350	2.80 (2.33-3.58) years	[13] , <i>C</i>
$1/\omega^{U}_{200$	Average time for HIV infected individuals on ART to progress from CD4 count 200-350 to CD4 count 350-500	1.42 (0.90-3.42) years	
$1/\omega^{U}_{350$	Average time for HIV infected individuals on ART to progress from CD4 count 350-500 to CD4 count >500	2.20 (1.07-7.28) years	
Commencemen	t of treatment		
$\sigma_{{}_{CD}4>500}$	Proportion of individuals with CD4 count >500 that commence treatment for HIV each year	0.2	Experiment al variable
$\sigma_{_{350$	Proportion of individuals with CD4 count 350-500 that commence treatment for HIV each year	0.5	

$\sigma_{_{200}}$	$\sigma_{200 < CD4 < 350} \qquad \begin{array}{l} \mbox{Proportion of individuals with CD4 count } \textbf{200-350} \\ \mbox{that commence treatment for HIV each year} \end{array} \qquad 0.75 - 0.85$						
$\sigma_{_{CD^2}}$	4<200	Proportion c commence t	f individuals with CD4 count <2 reatment for HIV each year	00 that	0.85-0.95		
Stop	oing treatn	hent				•	
ϕ_{s}		Percentage therapy each	of individuals on ART who nyear	cease	1-5%	d	
Resp	onse to tre	atment					
ϕ		Percentage viral rebound	of individuals on ART to exp d per year	erience	3-6%	[14]]
Resp	onse to tre	atment					
$1/\delta_{20}$	00 <cd4<350< td=""><td>Average time with CD4 cou</td><td>e after treatment failure for ind unt > 200 to go on second line A</td><td>lividuals \RT</td><td>6-18 months</td><td>Exp al v</td><td>eriment ariable</td></cd4<350<>	Average time with CD4 cou	e after treatment failure for ind unt > 200 to go on second line A	lividuals \RT	6-18 months	Exp al v	eriment ariable
$1/\delta_c$	D 4<200	Average tim count <200 t	ne for individuals on ART wi to go on second-line ART	th CD4	2-3 months		
Mort	ality Rates						
μ_{CD}	4>500	HIV-related >500 cells pe	death rate for patients with CD er μ L	4 count	0.051% (0.035-0.068%)	[15]]
μ_{350}	<cd4<500< td=""><td>HIV-related 350-500 cell</td><td>death rate for patients with CD s per μL</td><td>4 count</td><td>0.128% (0.092-0.164%)</td><td>[15]</td><td>]</td></cd4<500<>	HIV-related 350-500 cell	death rate for patients with CD s per μL	4 count	0.128% (0.092-0.164%)	[15]]
μ_{200}	<cd4<350< td=""><td>HIV-related patients with</td><td>death rate per 100 person-ye η CD4 count 200-350 cells per μ</td><td>ears for L</td><td>1.0% (0.2-2.0)%</td><td>[15,</td><td>, 16]</td></cd4<350<>	HIV-related patients with	death rate per 100 person-ye η CD4 count 200-350 cells per μ	ears for L	1.0% (0.2-2.0)%	[15,	, 16]
μ_{CD}	4<200	HIV-related patients with	death rate per 100 person-ye η CD4 count <200 cells per μL	ears for	4.08 (0.30-7.86)%		
 <i>a</i> Numerous studies have estimated the transmission risk of HIV in an occupational setting due to needlestick injury [17-23]. A model-based analysis evaluating population-level data in New Haven estimated the risk as ~0.7% [24]. Few studies have directly estimated the probability of HIV transmission per injection by IDUs using a contaminated syringe. In a long-term cohort study among injecting drug users in Bangkok, Thailand, a probability of transmission per exposure with a contaminated syringe was estimated to be 0.6% (0.4-0.9%) [3]. A review and meta-analysis suggested that the probability of transmission following a needlestick exposure is 0.23% (0-0.46%) and the infectivity per intravenous drug injection had a median of 0.8% (ranging 0.63%-2.4%) [2]. Estimates from studies based on occupational exposure tend to have lower transmission risk than estimates of risk by intravenous drug injection. Based on the injecting drug studies, we assume that the probability of transmission per drug-injection with a contaminated syringe ranges 0.6-0.8%. <i>b</i> A summary of the relation between HIV-1 RNA concentration and decline in CD4⁺ count from the prospective study by 							
	Mellors e	t al. [12] is give	en below:		· · · · · · · ·		
			Plasma HIV-1 R		ean decrease in CD4 ⁺ T cell count		
			≤ 500	-36	5.3 (-30 -42.3)		
			501-3,000	-44	4.8 (-39.1,-50.5)		
			3,001-10,000	-55	5.2 (-50.7,-59.)		
			10,001-30,000	-64	1.8 (-59.6,-70 0)		

		> 30.000	-76	5.5 (-70.58	2.9)		
	With this data, and as	suming that the average	\sim viral load is $\sim 10^4$	^{1.87} copies p	per mL for people without	t treatment	the $CD4^+$ T
	cell count decreases by	\prime an average of 76.5 (70.	.5. 82.9) every ver	ar.			
	To progress through the >500 CD4 cell category, we assume that the average CD4 count is 800 cells/uL after the 2-month						
	acute phase of HIV infection and then declines at the constant rate of 76.5 (70.5, 82.9) cells/ul each year. Then the						
	acute phase of fine to progress through this compartment is $2/12 \pm 200//76.5$ (70.5, 52.9) verse; that is $4.00/2.70$, 4.22 verse						
	To progress through the	ne 350-500 and 200-350) CD4 cell categor	ries we ass	sume an average loss of '	150 CD4 cel	ls Then the
	average time to progre	ess through this compart	ment is 150/(76.5	5 (70.5, 82.9	9)) vears: that is 1.96 (1.8	1. 2.13) vea	rs.
С	Below is a summary of	data from [25] for chan	ges in CD4 count	over time a	among people who are on	effective c/	ART.
	CD4 co	unt at initiation of	Time since	starting	Current CD4 (cells	per uL)	
	cART (c	ells per uL)	cART (years)		means (95% CI)	per (p.2.)	
	<200		<1		76 (53-99)		
			1-3		69 (63-76)		
			3-5		50 (36-69)		
			>5		2 (18-46)		
	201-350		<1		129 (91-166)		
			1-3		50 (25-74)		
			3-5		47 (24-69)		
			>		23 (2-44)		
	>350		<1		90 (37-144)		
			1-3		50 (18-82)		
			3-5		17 (-17-51)		
			>5		21 (-12-54)		
	We use this data to est	imate the average time t	o progress throug	h our CD4	categories whilst on effe	ctive cART.	For people
	with undetectable viral	load:					
	 For CD4 count increases from 0 to 200 cells per μL, average increases of 76 (53-99) cells per μL can be expected 						
	during the fir	st year and then 69 (63	3-76) cells per µ	L during th	he second and third year	s. Therefore	e, it can be
	expected to ta	ke 2.80 (2.33-3.58) year	s to progress throu	ugh this cat	egory.		
	 For CD4 court 	it increases from 200 to .	350 cells per μL,	we have a 1	150 CD4 count increase. I	in this interv	al, the CD4
	count increase	es by 129 (91-166) cells	per µL during the	e first year a	and then 50 (25-74) CD4	count during	g the second
	year. Therefor	e, it can be expected to t	take 1.42 (0.9-3.4)	2) years to	progress through this cate	gory.	
	• For CD4 count increases from 350 to 500 cells per μ L, then we have a 150 CD4 count increase. In this interval, the						
	CD4 count increases by 90 (37-144) cells per μ L during the first year and then 50 (18-82) cells per μ L during the						
	second year.	heretore, it can be exped	cted to take 2.20 ((1.07-7.28)	years to progress through	this categor	y.
	EuroSIDA study [26] i	nvestigated that the HCV	v serostatus does	not influen	ce CD4 recovery among	patients on A	ART. It was
	tound that there was not the thete was not the t	o difference in CD4 gain	n among HIV/HC	v contect	ed and HIV mono-infecte	a patients a	Iter starting
	AKI. Therefore we ass	sume the same recovery	rate for HIV/HCV	/ coinfected	i patient as HIV mono-ini	rected patien	it.
d	15.4/100 person years	is the average rate of st	opping one regim	he due to to	bxicity but the vast majori	ty usually st	art another
	regime [2/]. Very few	people who commence	ARI stop altoget	tner (exper	t opinion). Therefore, we	take the al	osolute rate
	of completely stopping	s therapy to range from :	1-5% per year as a	an experim	ental variable.		

Table A.2: Parameters related to hepatitis C

Symbol	Description		Values	References
Transmission				
$eta_{ ext{HCV}}$	Transmission probability of hepatitis C p contaminated syringe	per injection with a	1.5-4%	[23, 28-34], <i>a</i>
Testing Rate				
σ	Proportion of individuals to receiving HCV tes	st every year	53-70%	[11]
Disease progression	without treatment			
$1/\tau_A$	Average time for untreated HCV infected in from acute infection to the first stage of fibro	ndividuals to progress sis (F0)	4-8 months	[35, 36]
$1/ au_{F0_F1}$	Average time from fibrosis stage F0 to F1 [An probability]	nual transition	8.62 (0.23-16.95) years [0.116 (0.059-0.228)]	[37, 38]
$1/\tau_{F1_F2}$	Average time from fibrosis stage F1 to F2 [Annual transition probability]		11.76 (9.09-15.38) years [0.085 (0.065-0.110)]	[37, 38]
$1/ au_{F2_F3}$	Average time from fibrosis stage F2 to F3 [Annual transition probability]		11.76 (6.80-20.41) years [0.085 (0.049-0.147)]	[37, 38]
$1/\tau_{F3_F4}$	Average time from fibrosis stage F3 to F4 [Annual transition probability]		7.69 (3.13-18.87) years [0.130 (0.053-0.319)]	[37, 38]
$1/ au_{F4_LF}$	Average time from F4 to liver failure [Annual transition probability]		18.18 (10.87-25.0) years [0.055 (0.040-0.092)]	[39-55], <i>b</i>
$1/\tau_{\rm F4_HCC}$	Average time from F4 to hepatocellular carci [Annual transition probability]	noma	32.26 (26.32-41.67) years [0.031 (0.024-0.038)]	
$1/ au_{{\it LF}_{-\it HCC}}$	Average time from liver failure to hepatocell [Annual transition probability]	ular carcinoma	14.71 (10.10-24.39) years [0.068 (0.041-0.099)]	[55, 56]
$1/ au_{{\scriptscriptstyle L\!F}_{\scriptscriptstyle L\!T}}$	Average time from liver failure until liver tran [Annual transition probability]	nsplant	30.30 (20.41-58.82) years [0.033 (0.017-0.049)]	[57]
$1/ au_{\scriptscriptstyle HCC_LF}$	Average time until liver transplant f hepatocellular carcinoma [Annual transition	for individuals with probability]	10.0 (5.56-20.0) years [0.1 (0.05-0.18)]	[58], <i>C</i>
$1/\mu_{LF}$	Average time until liver-related death for failure [Annual transition probability]	individuals with liver	7.25 (4.95-13.51) years [0.138 (0.074–0.202)]	[44]
$1/\mu_{LT}$	Average time until liver-related death for individuals who have received a liver transplant [Annual transition probability]	First year After first year	5.92 (4.76-7.87) years [0.169 (0.127-0.210)] 29.41 (23.26-41.67) years [0.034 (0.024-0.043)]	[59, 60], <i>d</i>
$1/\mu_{\scriptscriptstyle HCC}$	Average time until liver-related death hepatocellular carcinoma [Annual transition	for individuals with probability]	1.65 (1.48-1.83) years [0.605 (0.545-0.676)]	[48]
Commencement of t	reatment			
1	Average time before individuals in	Asymptomatic	320 (213-399) days	e
$\overline{\eta_{\scriptscriptstyle A}}$	Acute/Early HCV infection commence treatment	Symptomatic	221 (188-274) days	
$n_{\rm r}$	Distribution of individuals commencing	F0/1	25-30%	[61]
- 1 F	HCV treatment per year according to stage	F2/3	46-60%	
	of fibrosis	F4	15-25%	
Stopping treatment				1

			0.46	[[2]]
1	Average duration of treatment	Acute	0.46 years	[62]
$\frac{-}{v}$		FO-F4	0.69 years	[63, 64]
Clearance of virus				
Ψ	Proportion of IDUs who spontaneously clear HCV	Acute	0.26 (0.22-0.29)	[65]
γ_A	Proportion of HCV-treated individuals who treatment (sustained virological responders)	clear the virus due to in Acute HCV	0.6-0.9	[66-70]
γ_{F0}	Proportion of HCV-treated individuals who treatment in F0 phase	clear the virus due to	0.60 (0.52-0.68)	[64, 71, 72]
γ_F	Proportion of HCV-treated individuals who treatment in F1-F4 phase	0.56 (0.50-0.61)	[63, 64, 71-77]	
a	No study has directly estimated the probability of HCV transmission per injection by IDUs using a contaminate syringe. Numerous studies have estimated the transmission risk of HCV in an occupational setting due to needlestic injury [23, 28-34]. In the absence of other data, we use these studies to estimate transmission risk among IDU sharing syringes. We reviewed these studies, paying particular attention on long-term cohort studies with large number of cases leading to a plausible range of transmission risk per exposure of 1 5-4%			
b	Pooled estimate from a survey of the literature [39-55]; weighted using sample size.			
С	11 of 111 new HCV-related HCC reported cases in 2007in Australia received a liver transplant [58]. This leads to 95% confidence interval of 5-18%.			[58]. This leads to a
d	Our deterministic ordinary differential equa exponential function over 40 years, leading which is equivalent to an average time of 23.	tion model assumes exp to an average transition 26 (17.95-34.01).	ponential rates. We determine probability of 0.043 (0.0294	ined the best-fitting 4, 0.0557) per year,
e	Based on unpublished data from the Australia	an Trial in Acute Hepatit	is C (ATAHC) study.	

Table A.3: Demographic, epidemiological and behavioral parameters

Symbol	Description		Values	References
N	Population size of IDUs		173,500	[11, 78], <i>a</i>
			(105,000-236,500)	
Р	Total number of syringes distributed per year			b
Epidemiolo	ogy parameters			
p_0^{HIV}	Prevalence of HIV among IDUs		1.17% (0.90- 1.40%)	С
p_0^{HCV}	Prevalence of HCV among IDUs			d
π	Average rate of people entering IDU population	I		е
μ	Annual background death rate (not drug-rela related)	ted or disease-	0.5-0.7%	f
ω	Percentage of syringes distributed that are not	used	0.5-1%	Experimental variable
Behavioura	al parameters			
n	Average number of injections per IDU per stratifications)	year (weighted	average over all injecting frequency	g
S	Proportion of IDUs who share syringes			h
q	Proportion of injections that are shared for IDUs that share 13-17% syringes			
$\eta_{_{ m HIV}}$	Proportion of IDUs who received HIV test in last year			
$\eta_{_{ m HCV}}$	Proportion of IDUs who received HCV test in last year			
Syringe cle	aning parameters			
$p_c^{syringe}$	Proportion of syringes used by multiple p cleaned before re-use	eople that are	5-10%	Experimental variable
p_c^{other}	Proportion of times other equipment (spoons, t that is used by multiple people is cleaned before	ourniquets, etc) e re-use	1-5%	Experimental variable
$\mathcal{E}_{c}^{syringe}$	Effectiveness of syringe cleaning	HIV	60-75%	[79-81]

Healthcare costs and health utilities

Table A.4: Healthcare costs (annual cost per person in 2010 Australian dollars)

Healthcare costs for HIV	Costs	Reference*
PLHIV who have CD4 count >500 cells per μl	\$1,679	[94-97]
PLHIV who have CD4 count 350-500 cells per μl	\$2,265	
PLHIV who have CD4 count 200-350 cells per μl	\$3,010	
PLHIV who have CD4 count <200 cells per μ l	\$6,062	
Cost of first-line ART	\$16,105	
Cost of second-line ART	\$16,728	
Cost of subsequent lilnes of ART	\$30,613	
Non-ART healthcare costs	\$3,010	
Healthcare costs for HCV	Costs	Reference*
Acute hepatitis C	\$879	[94-97]
Pre-cirrhosis stage of chronic hepatitis C (fibrosis stage 0 to 3) – 1 st year	\$879	
Pre-cirrhosis stage of chronic hepatitis C (fibrosis stage 0 to 3) – successive years	\$317	
Compensated cirrhosis (fibrosis stage 4)	\$911	
Acute hepatitis C treatment	\$11,883	
Treatment of chronic HCV patients with pegylated interferon and ribavirin (24 weeks)	\$11,935	
Treatment of chronic HCV patients with pegylated interferon and ribavirin (48 weeks)	\$20,758	
Hepatocellular carcinoma	\$18,772	
Liver transplant (1st year)	\$126,095	
Liver transplant (subsequent years)	\$14,067	
Decompensated cirrhosis (liver failure)	\$14,067	

* Outpatient items were valued from the Medicare Benefits Schedule[94] and Pharmaceutical Benefits Schedule[95]. The unit costs of admission were estimated by searching health department data on the frequency and proportions of admission to hospital with different health states of HCV and HIV[96] and then deriving a weighted average cost per admission in a health state using cost weights for admission to an Australian public hospital[97]. Client costs for the purchase of injection equipment were estimated from data on the number of sterile injection equipment provided through pharmacies and average client out-of-pocket cost of packs of sterile injection equipment.. All costs were estimated in 2008 Australian dollars and inflated to 2010 Australian dollars using the health consumer price index[98].

Table A.5: Health state utilities

HIV	Low estimates	Upper estimates	Reference
Health utility of uninfected IDUs	0.64	0.85	[99-104]
Relative health utility of PLHIV with CD4 > 500	0.84	0.95	[105, 106]
Relative health utility of PLHIV with CD4 is 350-500	0.84	0.93	[105, 106]
Relative health utility of PLHIV with CD4 is 200-350	0.72	0.93	[105, 106]
Relative health utility of PLHIV with CD4 < 200	0.60	0.85	[105, 106]
Relative health utility of PLHIV on ART	0.70	0.90	[106-109]
HCV	Low estimates	Upper estimates	Reference
			[100, 110,
Relative health utility of PLHCV at acute stage	0.64	0.89	111]
			[100, 110,
Relative health utility of PLHCV at F0 to F3 stage	0.64	0.89	111]
			[100, 110,
Relative health utility of PLHCV at F4 stage	0.62	0.88	111]
Relative health utility of PLHCV at liver failure			[100, 110,
stage	0.52	0.87	111]

Relative health utility of PLHCV at HCC stage	0.54	0.80	[100, 111]
Relative health utility of PLHCV at liver transplant	0.64	0.89	[100, 111]

Model outcomes versus available data

Figure A.1: Calibrated HIV-related trajectories (median: solid curve, interquartile ranges: dashed curves) compared with available data (solid dots).

Figure A.2: Calibrated HCV-related trajectories (median: solid curve, interquartile ranges: dashed curves) compared with available data (solid dots).

Summary of economic results

Table A.6: Summary of economic results

Outcome (median, IQR)	Total QALYs	Gain in QALY (status quo – scenario)	Total healthcare costs	Cost savings (scenario-status quo)
Year 2000-2010*				
Current Status (status quo)	4,869,085		3,166m	
(5% adjusted)	(4,055,504-5,848,340)		(2,602-4,176)m	
Scenario 1: 25% sharing rate	4,847,455	13,596	3,238m	61m
(5% adjusted)	(4,029,282-5,838,940)	(8,646-16,736)	(2,661-4,238)m	(33-50)m
Scenario 2: 50% sharing rate	4,797,530	55,246	3,392m	228m
(5% adjusted)	(3,992,403-5,809,532)	(37,042-78,899)	(2,764-4,489)m	(168 311)m
Year 2000-Lifetime*				
Current Status (status quo)	10,128,497		5,003m	
(5% discounted)	(8,385,198-12,353,537)		(4,219-6,437)m	
Scenario 1: 25% sharing rate	10,092,139	26,505	5,266m	221m
(5% discounted)	(8,345,917-12,321,560)	(15,718-36,401)	(4,444-6,650)m	(166-248)m
Scenario 2: 50% sharing rate	10,043,383	99,369	5,762m	766m
(5% discounted)	(8,290,704-12,204,571)	(68,529-127,558)	(4,799-7,355)m	(646-861)m
Total NSP costs (adjusted for	CPI)	\$245m		
Incremental cost-effectivenes	ss ratio (ICER)**	2000-2010		2000-Lifetime
25% shoring	undiscounted	25,664 (16,	635-40,976)	24,163 (15,016-44,373)
25% snaring	5% discounted	22,528 (14,	590-36,263)	17,584 (11,299-31,373)
FO9/ showing	undiscounted	5,407 (3,7	/39-7,986)	2,199 (1,786-2,952)
50% snaring	5% discounted	4,436 (3,1	.06-6,616)	2,466 (1,921-3,576)

* Adjusted for CPI with 2010 Australian dollars and discounted 5%. Results from 3% discounting are presented in the main manuscript.

** Incremental cost-effectiveness ratio (ICER) = incremental Costs/ incremental QALYs

= (total costs of investment + total costs of status quo –total costs of scenario)/(total QALYs of scenario – total QALYs of status quo).

Results from sensitivity analyses

Figure A.3: Tornado plot of partial rank correlation coefficients for the HIV incidence in 2010 with all model input parameters

Figure A.4: Tornado plot of partial rank correlation coefficients for the HCV incidence in 2010 with all model input parameters

References

- 1. Anderson RM, May RM. *Infectious Diseases of Humans*. Oxford: Oxford University Press; 1991.
- 2. Baggaley RF, Boily MC, White RG, Alary M. Risk of HIV-1 transmission for parenteral exposure and blood transfusion: a systematic review and meta-analysis. *AIDS* 2006,**20**:805-812.
- 3. Hudgens MG, Longini IM, Jr., Vanichseni S, Hu DJ, Kitayaporn D, Mock PA, *et al.* Subtype-specific transmission probabilities for human immunodeficiency virus type 1 among injecting drug users in Bangkok, Thailand. *Am J Epidemiol* 2002,**155**:159-168.
- 4. Castilla J, Del Romero J, Hernando V, Marincovich B, Garcia S, Rodriguez C. Effectiveness of highly active antiretroviral therapy in reducing heterosexual transmission of HIV. *J Acquir Immune Defic Syndr* 2005,**40**:96-101.
- 5. Reynolds SJ, Makumbi F, Nakigozi G, Kagaayi J, Gray RH, Wawer M, *et al.* HIV-1 transmission among HIV-1 discordant couples before and after the introduction of antiretroviral therapy. *AIDS* 2011,**25**:473-477.
- 6. Porco TC, Martin JN, Page-Shafer KA, Cheng A, Charlebois E, Grant RM, *et al.* Decline in HIV infectivity following the introduction of highly active antiretroviral therapy. *AIDS* 2004,**18**:81-88.
- 7. Kilby JM, Lee HY, Hazelwood JD, Bansal A, Bucy RP, Saag MS, *et al.* Treatment response in acute/early infection versus advanced AIDS: equivalent first and second phases of HIV RNA decline. *AIDS* 2008, **22**:957-962.
- 8. Montaner JS, Hogg R, Wood E, Kerr T, Tyndall M, Levy AR, *et al.* The case for expanding access to highly active antiretroviral therapy to curb the growth of the HIV epidemic. *Lancet* 2006, **368**:531-536.
- 9. Lima VD, Johnston K, Hogg RS, Levy AR, Harrigan PR, Anema A, *et al.* Expanded access to highly active antiretroviral therapy: a potentially powerful strategy to curb the growth of the HIV epidemic. *J Infect Dis* 2008,**198**:59-67.
- 10. Cohen MS, McCauley M, Gamble TR. HIV treatment as prevention and HPTN 052. *Curr Opin HIV AIDS* 2012,**7**:99-105.
- 11. Iversen J TL, Maher L. Australian NSP Survey National Data Report 2002--2006. In: National Centre in HIV Epidemiology and Clinical Research, University of New South Wales, 2007.
- 12. Mellors JW, Munoz A, Giorgi JV, Margolick JB, Tassoni CJ, Gupta P, *et al.* Plasma viral load and CD4+ lymphocytes as prognostic markers of HIV-1 infection. *Ann Intern Med* 1997,**126**:946-954.
- 13. Mocroft A, Phillips AN, Gatell J, Ledergerber B, Fisher M, Clumeck N, *et al.* Normalisation of CD4 counts in patients with HIV-1 infection and maximum virological suppression who are taking combination antiretroviral therapy: an observational cohort study. *Lancet* 2007,**370**:407-413.
- 14. Smith CJ, Phillips AN, Hill T, Fisher M, Gazzard B, Porter K, *et al.* The rate of viral rebound after attainment of an HIV load <50 copies/mL according to specific antiretroviral drugs in use: Results from a multicenter cohort study. *Journal of Infectious Diseases* 2005,**192**:1387-1397.
- 15. Colette Smith, Antonella d'Arminio Monforte, Stephane de Wit, Nina Friis-Moller, Jens Lundgren, Andrew Philips, *et al.* Causes of death in the D:A:D study-initial results. In; 2008.
- 16. Ledergerber B, Lundgren JD, Walker AS, Sabin C, Justice A, Reiss P, *et al.* Predictors of trend in CD4-positive T-cell count and mortality among HIV-1-infected individuals with virological failure to all three antiretroviral-drug classes. *Lancet* 2004,**364**:51-62.
- 17. Henderson DK, Fahey BJ, Willy M, Schmitt JM, Carey K, Koziol DE, *et al.* Risk for occupational transmission of human immunodeficiency virus type 1 (HIV-1) associated with clinical exposures. A prospective evaluation. *Ann Intern Med* 1990,**113**:740-746.

- 18. Cavalcante NJ, Abreu ES, Fernandes ME, Richtmann R, Piovesana MN, Yamada FT, *et al.* Risk of health care professionals acquiring HIV infection in Latin America. *AIDS Care* 1991,**3**:311-316.
- 19. Gerberding JL. Incidence and prevalence of human immunodeficiency virus, hepatitis B virus, hepatitis C virus, and cytomegalovirus among health care personnel at risk for blood exposure: final report from a longitudinal study. *J Infect Dis* 1994,**170**:1410-1417.
- 20. Ippolito G, Puro V, De Carli G. The risk of occupational human immunodeficiency virus infection in health care workers. Italian Multicenter Study. The Italian Study Group on Occupational Risk of HIV infection. *Arch Intern Med* 1993,**153**:1451-1458.
- 21. Nelsing S, Nielsen TL, Nielsen JO. Occupational exposure to human immunodeficiency virus among health care workers in a Danish hospital. *J Infect Dis* 1994,**169**:478.
- 22. Tokars JI, Marcus R, Culver DH, Schable CA, McKibben PS, Bandea CI, *et al.* Surveillance of HIV infection and zidovudine use among health care workers after occupational exposure to HIV-infected blood. The CDC Cooperative Needlestick Surveillance Group. *Ann Intern Med* 1993, **118**:913-919.
- 23. Patz JA, Jodrey D. Occupational health in surgery: risks extend beyond the operating room. *Aust N Z J Surg* 1995, **65**:627-629.
- 24. Kaplan EH, O'Keefe E. Let the needles do the talking! Evaluating the New Haven needle exchange. *Interfaces* 1993,**23**:7-26.
- 25. Mocroft A, Phillips A, Gatell J, Ledergerber B, Fisher M, Clumeck N, *et al.* Normalisation of CD4 counts in patients with HIV-1 infection and maximum virological suppression who are taking combination antiretroviral therapy: an observational cohort study. *Lancet* 2007,**370**:407-413.
- 26. Peters L, Mocroft A, Soriano V, Rockstroh J, Jurgen K, Losso M, *et al.* Hepatitis C Virus Coinfection Does Not Influence the CD4 Cell Recovery in HIV-1-Infected Patients With Maximum Virologic Suppression. *JAIDS Journal of Acquired Immune Deficiency Syndromes*,**50(5)**:457-463.
- 27. Lodwick RK, Smith CJ, Youle M, Lampe FC, Tyrer M, Bhagani S, *et al.* Stability of antiretroviral regimens in patients with viral suppression. *AIDS* 2008,**22**:1039-1046.
- 28. Short LJ, Bell DM. Risk of occupational infection with blood-borne pathogens in operating and delivery room settings. *Am J Infect Control* 1993,**21**:343-350.
- 29. Gerberding JL. Management of Occupational Exposures to Blood-Borne Viruses. *New England Journal of Medicine* 1995,**332**:444.
- 30. MacDonald M, Crofts N, Kaldor J. Transmission of hepatitis C virus: rates, routes, and cofactors. *Epidemiol Rev* 1996, **18**:137-148.
- 31. Kiyosawa K, Sodeyama T, Tanaka E, Nakano Y, Furuta S, Nishioka K, *et al.* Hepatitis C in hospital employees with needlestick injuries. *Ann Intern Med* 1991,**115**:367-369.
- 32. Sodeyama T, Kiyosawa K, Urushihara A, Matsumoto A, Tanaka E, Furuta S, *et al.* Detection of hepatitis C virus markers and hepatitis C virus genomic-RNA after needlestick accidents. *Arch Intern Med* 1993,**153**:1565-1572.
- 33. Hamid SS, Farooqui B, Rizvi Q, Sultana T, Siddiqui AA. Risk of transmission and features of hepatitis C after needlestick injuries. *Infect Control Hosp Epidemiol* 1999,**20**:63-64.
- 34. De Carli G, Puro V, Ippolito G. Risk of hepatitis C virus transmission following percutaneous exposure in healthcare workers. *Infection* 2003,**31 Suppl 2**:22-27.
- 35. Santantonio T, Medda E, Ferrari C, Fabris P, Cariti G, Massari M, *et al.* Risk factors and outcome among a large patient cohort with community-acquired acute hepatitis C in Italy. *Clin Infect Dis* 2006,**43**:1154-1159.
- 36. Hofer H, Watkins-Riedel T, Janata O, Penner E, Holzmann H, Steindl-Munda P, *et al.* Spontaneous viral clearance in patients with acute hepatitis C can be predicted by repeated measurements of serum viral load. *Hepatology* 2003,**37**:60-64.

- 37. Thein HH, Yi Q, Dore GJ, Krahn MD. Estimation of stage-specific fibrosis progression rates in chronic hepatitis C virus infection: a meta-analysis and meta-regression. *Hepatology* 2008, **48**:418-431.
- 38. Thein HH, Yi Q, Dore GJ, Krahn MD. Natural history of hepatitis C virus infection in HIV-infected individuals and the impact of HIV in the era of highly active antiretroviral therapy: a meta-analysis. *AIDS* 2008,**22**:1979-1991.
- 39. Bruno R, Sacchi P, Puoti M, Maiocchi L, Patruno S, Carosi G, *et al.* Natural history of compensated viral cirrhosis in a cohort of patients with HIV infection. *J Acquir Immune Defic Syndr* 2007,**46**:297-303.
- 40. Bruno S, Silini E, Crosignani A, Borzio F, Leandro G, Bono F, *et al.* Hepatitis C virus genotypes and risk of hepatocellular carcinoma in cirrhosis: a prospective study. *Hepatology* 1997,**25**:754-758.
- 41. Chiaramonte M, Stroffolini T, Vian A, Stazi MA, Floreani A, Lorenzoni U, *et al.* Rate of incidence of hepatocellular carcinoma in patients with compensated viral cirrhosis. *Cancer* 1999,**85**:2132-2137.
- 42. Degos F, Christidis C, Ganne-Carrie N, Farmachidi JP, Degott C, Guettier C, *et al.* Hepatitis C virus related cirrhosis: time to occurrence of hepatocellular carcinoma and death. *Gut* 2000,**47**:131-136.
- 43. del Olmo JA, Serra MA, Rodriguez F, Escudero A, Gilabert S, Rodrigo JM. Incidence and risk factors for hepatocellular carcinoma in 967 patients with cirrhosis. *J Cancer Res Clin Oncol* 1998,**124**:560-564.
- 44. Fattovich G, Giustina G, Degos F, Tremolada F, Diodati G, Almasio P, *et al.* Morbidity and mortality in compensated cirrhosis type C: a retrospective follow-up study of 384 patients. *Gastroenterology* 1997,**112**:463-472.
- 45. Fattovich G, Pantalena M, Zagni I, Realdi G, Schalm SW, Christensen E. Effect of hepatitis B and C virus infections on the natural history of compensated cirrhosis: a cohort study of 297 patients. *Am J Gastroenterol* 2002,**97**:2886-2895.
- 46. Gentilini P, Laffi G, La Villa G, Romanelli RG, Buzzelli G, Casini-Raggi V, *et al.* Long course and prognostic factors of virus-induced cirrhosis of the liver. *Am J Gastroenterol* 1997,**92**:66-72.
- 47. Hu KQ, Tong MJ. The long-term outcomes of patients with compensated hepatitis C virus-related cirrhosis and history of parenteral exposure in the United States. *Hepatology* 1999,**29**:1311-1316.
- 48. Hutchinson SJ, Bird SM, Goldberg DJ. Modeling the current and future disease burden of hepatitis C among injection drug users in Scotland. *Hepatology* 2005,**42**:711-723.
- 49. Ikeda K, Saitoh S, Koida I, Arase Y, Tsubota A, Chayama K, *et al.* A multivariate analysis of risk factors for hepatocellular carcinogenesis: a prospective observation of 795 patients with viral and alcoholic cirrhosis. *Hepatology* 1993,**18**:47-53.
- 50. Imberti D, Fornari F, Sbolli G, Buscarini E, Squassante L, Buscarini L. Hepatocellular carcinoma in liver cirrhosis. A prospective study. *Scand J Gastroenterol* 1993,**28**:540-544.
- 51. Niederau C, Lange S, Heintges T, Erhardt A, Buschkamp M, Hurter D, *et al.* Prognosis of chronic hepatitis C: results of a large, prospective cohort study. *Hepatology* 1998, **28**:1687-1695.
- 52. Nishiguchi S, Kuroki T, Nakatani S, Morimoto H, Takeda T, Nakajima S, *et al.* Randomised trial of effects of interferon-alpha on incidence of hepatocellular carcinoma in chronic active hepatitis C with cirrhosis. *Lancet* 1995,**346**:1051-1055.
- 53. Serfaty L, Aumaitre H, Chazouilleres O, Bonnand AM, Rosmorduc O, Poupon RE, *et al.* Determinants of outcome of compensated hepatitis C virus-related cirrhosis. *Hepatology* 1998,**27**:1435-1440.
- 54. Tsai JF, Jeng JE, Ho MS, Chang WY, Hsieh MY, Lin ZY, *et al.* Effect of hepatitis C and B virus infection on risk of hepatocellular carcinoma: a prospective study. *Br J Cancer* 1997,**76**:968-974.

- 55. Planas R, Balleste B, Alvarez MA, Rivera M, Montoliu S, Galeras JA, *et al.* Natural history of decompensated hepatitis C virus-related cirrhosis. A study of 200 patients. *J Hepatol* 2004,**40**:823-830.
- 56. Sweeting MJ, De Angelis D, Brant LJ, Harris HE, Mann AG, Ramsay ME. The burden of hepatitis C in England. *J Viral Hepat* 2007,**14**:570-576.
- 57. Krahn M, Wong JB, Heathcote J, Scully L, Seeff L. Estimating the prognosis of hepatitis C patients infected by transfusion in Canada between 1986 and 1990. *Med Decis Making* 2004,**24**:20-29.
- 58. HIV/AIDS, Viral Hepatitis & Sexually Transmissible Infections in Australia Annual Surveillance Report. In: National Centre in HIV Epidemiology and Clinical Research; 2008.
- 59. Charlton M, Seaberg E, Wiesner R, Everhart J, Zetterman R, Lake J, *et al.* Predictors of patient and graft survival following liver transplantation for hepatitis C. *Hepatology* 1998,**28**:823-830.
- 60. Gane EJ, Portmann BC, Naoumov NV, Smith HM, Underhill JA, Donaldson PT, *et al.* Long-term outcome of hepatitis C infection after liver transplantation. *N Engl J Med* 1996,**334**:815-820.
- 61. Estimates and projections of the Hepatitis C virus epidemic in Australia 2006. In: National Centre in HIV Epidemiology and Clinical Research. Hepatitis C Virus Projections Working Group; 2006.
- 62. Kamal SM. Acute hepatitis C: a systematic review. *Am J Gastroenterol* 2008,**103**:1283-1297.
- 63. Fried MW, Shiffman ML, Reddy KR, Smith C, Marinos G, Goncales FL, Jr., *et al.* Peginterferon alfa-2a plus ribavirin for chronic hepatitis C virus infection. *N Engl J Med* 2002,**347**:975-982.
- 64. Manns MP, McHutchison JG, Gordon SC, Rustgi VK, Shiffman M, Reindollar R, *et al.* Peginterferon alfa-2b plus ribavirin compared with interferon alfa-2b plus ribavirin for initial treatment of chronic hepatitis C: a randomised trial. *Lancet* 2001,**358**:958-965.
- 65. Micallef JM, Kaldor JM, Dore GJ. Spontaneous viral clearance following acute hepatitis C infection: a systematic review of longitudinal studies. *J Viral Hepat* 2006,**13**:34-41.
- 66. Kamal SM, Moustafa KN, Chen J, Fehr J, Abdel Moneim A, Khalifa KE, *et al.* Duration of peginterferon therapy in acute hepatitis C: a randomized trial. *Hepatology* 2006,**43**:923-931.
- 67. Kamal SM, Fouly AE, Kamel RR, Hockenjos B, Al Tawil A, Khalifa KE, *et al.* Peginterferon alfa-2b therapy in acute hepatitis C: impact of onset of therapy on sustained virologic response. *Gastroenterology* 2006,**130**:632-638.
- 68. Villano SA, Nelson KE, Vlahov D, Purcell RH, Saah AJ, Thomas DL. Hepatitis A among homosexual men and injection drug users: more evidence for vaccination. *Clin Infect Dis* 1997,**25**:726-728.
- 69. CDC. Recommendations for follow-up of health-care workers after occupational exposure to hepatitis C virus. *JAMA* 1997,**278**:1056-1057.
- 70. Recommendations for follow-up of health-care workers after occupational exposure to hepatitis C virus. *MMWR Morb Mortal Wkly Rep* 1997,**46**:603-606.
- 71. Hadziyannis SJ, Sette H, Jr., Morgan TR, Balan V, Diago M, Marcellin P, *et al.* Peginterferonalpha2a and ribavirin combination therapy in chronic hepatitis C: a randomized study of treatment duration and ribavirin dose. *Ann Intern Med* 2004,**140**:346-355.
- 72. Krawitt EL, Gordon SR, Grace ND, Ashikaga T, Ray MA, Palmer M, *et al.* A study of low dose peginterferon alpha-2b with ribavirin for the initial treatment of chronic hepatitis C. *Am J Gastroenterol* 2006,**101**:1268-1273.
- 73. Alfaleh FZ, Hadad Q, Khuroo MS, Aljumah A, Algamedi A, Alashgar H, *et al.* Peginterferon alpha-2b plus ribavirin compared with interferon alpha-2b plus ribavirin for initial treatment of chronic hepatitis C in Saudi patients commonly infected with genotype 4. *Liver Int* 2004,**24**:568-574.
- 74. Bosques-Padilla F, Trejo-Estrada R, Campollo-Rivas O, Cortez-Hernandez C, Dehesa-Violante M, Maldonado-Garza H, *et al.* Peginterferon alfa-2a plus ribavirin for treating chronic hepatitis C virus infection: analysis of Mexican patients included in a multicenter international clinical trial. *Ann Hepatol* 2003,**2**:135-139.

- 75. Gish RG, Arora S, Rajender Reddy K, Nelson DR, O'Brien C, Xu Y, *et al.* Virological response and safety outcomes in therapy-nai ve patients treated for chronic hepatitis C with taribavirin or ribavirin in combination with pegylated interferon alfa-2a: a randomized, phase 2 study. *J Hepatol* 2007,**47**:51-59.
- 76. Lee SD, Yu ML, Cheng PN, Lai MY, Chao YC, Hwang SJ, *et al.* Comparison of a 6-month course peginterferon alpha-2b plus ribavirin and interferon alpha-2b plus ribavirin in treating Chinese patients with chronic hepatitis C in Taiwan. *J Viral Hepat* 2005, **12**:283-291.
- 77. Mimidis K, Papadopoulos VP, Elefsiniotis I, Koliouskas D, Ketikoglou I, Paraskevas E, *et al.* Hepatitis C virus survival curve analysis in naive patients treated with peginterferon alpha-2b plus ribavirin. A randomized controlled trial for induction with high doses of peginterferon and predictability of sustained viral response from early virologic data. *J Gastrointestin Liver Dis* 2006,**15**:213-219.
- 78. Mathers BM, Degenhardt L, Phillips B, Wiessing L, Hickman M, Strathdee SA, *et al.* Global epidemiology of injecting drug use and HIV among people who inject drugs: a systematic review. *Lancet* 2008, **372**:1733-1745.
- 79. Abdala N, Gleghorn AA, Carney JM, Heimer R. Can HIV-1-Contaminated Syringes Be Disinfected? Implications for Transmission Among Injection Drug Users. *JAIDS Journal of Acquired Immune Deficiency Syndromes* 2001,**28**:487-494.
- 80. Siegel J, Weinstein M, Fineberg H. Bleach programs for preventing AIDS among iv drug users: modeling the impact of HIV prevalence. *Am J Public Health* 1991,**81**:1273-1279.
- 81. Abdala N, Crowe M, Tolstov Y, Heimer R. Survival of human immunodeficiency virus type 1 after rinsing injection syringes with different cleaning solutions. *Subst Use Misuse* 2004,**39**:581-600.
- 82. Hagan H, Thiede H. Does bleach disinfection of syringes help prevent hepatitis C virus transmission. *Epidemiology* 2003,**14**:628-629.
- 83. Agolini G, Russo A, Clementi M. Effect of phenolic and chlorine disinfectants on hepatitis C virus binding and infectivity. *Am J Infect Control* 1999,**27**:236-239.
- 84. Kapadia F, Vlahov D, Des Jarlais DC, Strathdee SA, Ouellet L, Kerndt P, *et al.* Does Bleach Disinfection of Syringes Protect Against Hepatitis C Infection Among Young Adult Injection Drug Users? *Epidemiology* 2002,**13**:738.
- 85. Syringe disinfection for Injection Drug Users. In: Centers for Disease Control and Prevention 2007.
- 86. Crofts N, Aitken CK, Kaldor JM. The force of numbers: why hepatitis C is spreading among Australian injecting drug users while HIV is not. *Med J Aust* 1999,**170**:220-221.
- 87. Law MG, Dore GJ, Bath N, Thompson S, Crofts N, Dolan K, *et al.* Modelling hepatitis C virus incidence, prevalence and long-term sequelae in Australia, 2001. *Int J Epidemiol* 2003,**32**:717-724.
- 88. Australian demographic statistics. In: Australian Bureau of Statistics (ABS); June 2008
- 89. Australian demographic statistics. In: Australian Bureau of Statistics (ABS); December 2002.
- 90. Degenhardt L, McLaren J, Ali H, Briegleb C. Mortality among dependent users of heroin and other opioids: Illicit Drugs Discussion Paper No. 9. In. Sydney: National Drug and Alcohol Research Centre, University of New South Wales; 2008.
- 91. Stoove MA, Dietze PM, Aitken CK, Jolley D. Mortality among injecting drug users in Melbourne: a 16-year follow-up of the Victorian Injecting Cohort Study (VICS). *Drug Alcohol Depend* 2008,**96**:281-285.
- 92. Gibson A, Degenhardt L, Mattick RP, Ali R, White J, O'Brien S. Exposure to opioid maintenance treatment reduces long-term mortality. *Addiction* 2008,**103**:462-468.
- 93. Gibson AE, Degenhardt LJ. Mortality related to pharmacotherapies for opioid dependence: a comparative analysis of coronial records. *Drug Alcohol Rev* 2007,**26**:405-410.

- 94. Medicare Australia. MBS online. In: Medicare Australia; 2008.
- 95. Department of Health and Ageing. Pharmaceutical Benefits Schedule. In. Canberra; 2008.
- 96. Department of Health and Ageing. National Admitted Patient Care Collection (NAPCC) 2004-05 Clinical Profiles 2004-05. In; 2005.
- 97. Department of Health and Ageing. Round 11 (2006-07) Cost Report Public version 5.1,. In. Canberra: Department of Health and Ageing; 2007.
- 98. CPI: Groups, Weighted Average of Eight Capital Cities, Index Numbers and Percentage Changes In: Australian Bureau of Statistics; 2011.
- 99. Dalgard O, Egeland A, Skaug K, Vilimas K, Steen T. Health-related quality of life in active injecting drug users with and without chronic hepatitis C virus infection. *Hepatology* 2004,**39**:74-80.
- 100. Thein HH, Krahn M, Kaldor JM, Dore GJ. Estimation of utilities for chronic hepatitis C from SF-36 scores. *Am J Gastroenterol* 2005,**100**:643-651.
- 101. Nichol MB, Sengupta N, Globe DR. Evaluating quality-adjusted life years: estimation of the health utility index (HUI2) from the SF-36. *Med Decis Making* 2001,**21**:105-112.
- 102. Hawthorne G, Richardson J, Day NA. A comparison of the Assessment of Quality of Life (AQoL) with four other generic utility instruments. *Ann Med* 2001,**33**:358-370.
- 103. Fryback DG, Lawrence WF, Martin PA, Klein R, Klein BE. Predicting Quality of Well-being scores from the SF-36: results from the Beaver Dam Health Outcomes Study. *Med Decis Making* 1997,**17**:1-9.
- 104. Shmueli A. The SF-36 profile and health-related quality of life: an interpretative analysis. *Qual Life Res* 1998,**7**:187-195.
- 105. Simpson KN, Luo MP, Chumney E, Sun E, Brun S, Ashraf T. Cost-effectiveness of lopinavir/ritonavir versus nelfinavir as the first-line highly active antiretroviral therapy regimen for HIV infection. *HIV Clin Trials* 2004,**5**:294-304.
- 106. Tengs TO, Lin TH. A meta-analysis of utility estimates for HIV/AIDS. *Med Decis Making* 2002,**22**:475-481.
- 107. Revicki DA, Wu AW, Murray MI. Change in clinical status, health status, and health utility outcomes in HIV-infected patients. *Med Care* 1995,**33**:AS173-182.
- 108. Tsevat J, Sherman SN, McElwee JA, Mandell KL, Simbartl LA, Sonnenberg FA, *et al.* The will to live among HIV-infected patients. *Ann Intern Med* 1999,**131**:194-198.
- 109. Tsevat J, Solzan JG, Kuntz KM, Ragland J, Currier JS, Sell RL, *et al.* Health values of patients infected with human immunodeficiency virus. Relationship to mental health and physical functioning. *Med Care* 1996, **34**:44-57.
- 110. Hsu PC, Krajden M, Yoshida EM, Anderson FH, Tomlinson GA, Krahn MD. Does cirrhosis affect quality of life in hepatitis C virus-infected patients? *Liver Int* 2009, **29**:449-458.
- 111. Chong CA, Gulamhussein A, Heathcote EJ, Lilly L, Sherman M, Naglie G, *et al.* Health-state utilities and quality of life in hepatitis C patients. *Am J Gastroenterol* 2003,**98**:630-638.