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Abstract

Background

Prioritizing investments across health interventions is complicated by the nonlinear relation-

ship between intervention coverage and epidemiological outcomes. It can be difficult for

countries to know which interventions to prioritize for greatest epidemiological impact, par-

ticularly when budgets are uncertain.

Methods

We examined four case studies of HIV epidemics in diverse settings, each with different

characteristics. These case studies were based on public data available for Belarus, Peru,

Togo, and Myanmar. The Optima HIV model and software package was used to estimate

the optimal distribution of resources across interventions associated with a range of budget

envelopes. We constructed “investment staircases”, a useful tool for understanding invest-

ment priorities. These were used to estimate the best attainable cost-effectiveness of the

response at each investment level.

Findings

We find that when budgets are very limited, the optimal HIV response consists of a smaller

number of ‘core’ interventions. As budgets increase, those core interventions should first be
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scaled up, and then new interventions introduced. We estimate that the cost-effectiveness

of HIV programming decreases as investment levels increase, but that the overall cost-

effectiveness remains below GDP per capita.

Significance

It is important for HIV programming to respond effectively to the overall level of funding avail-

ability. The analytic tools presented here can help to guide program planners understand

the most cost-effective HIV responses and plan for an uncertain future.

Introduction

The question of how to prioritize investments across a range of public health interventions is

central to health economics. Cost-effectiveness analyses were developed to address this ques-

tion within an evidence-based framework, but their use has been limited, with investment pri-

oritization in many countries determined by historical precedent rather than cost-effectiveness

analyses[1].

Prioritizing investments across interventions that aim to combat an infectious disease is par-

ticularly difficult. Traditional cost-effectiveness analyses rely on an accurate estimation of both

program costs and outcomes to calculate cost-effectiveness ratios. A single cost effectiveness

ratio will be prepared for a given intervention in a given context, thus assuming constant or lin-

ear marginal outcomes for this intervention at all levels of expenditure. However, for the major-

ity of infectious diseases, both costs and outcomes are likely to be highly nonlinear functions of

program coverage[2–5]. This means that the cost-effectiveness ratio varies depending on the

level of investment. Furthermore, interaction effects between different programs mean that the

cost-effectiveness of any given program depends on the coverage levels of all other programs[6].

It is thus necessary to consider an entire response simultaneously, in order to accurately under-

stand the cost-effectiveness of a single intervention. Notable examples of studies that have

attempted this for HIV include a study of HIV programs in Vietnam[7], studies of harm reduc-

tion packages for people who inject drugs in different contexts[8, 9], and studies of Avahan pro-

grams in South India[10]. Examples can also be found for malaria[11, 12] and tuberculosis[13]

responses. In all examples, synergies between interventions have been emphasized.

For this study, we investigated HIV programmatic priority setting in different HIV epidem-

ics. We did this by conducting modeling research exercises with four case study epidemics.

The case studies were based on public data available for Belarus, Peru, Togo, and Myanmar,

and represent epidemics across four different continents, with different national income levels,

HIV funding levels, and epidemic conditions. The Optima HIV model has been, or is being,

used by each of these countries in separate studies to guide target setting or investment choices

towards the country’s national priorities. This study uses the Optima HIV model but with pub-

lic data, addressing standardized objectives to compare and contrast outcomes across different

settings to draw principles for HIV investment decisions. Namely, we investigated the relation-

ships between (a) the total level of investment in an HIV response, (b) the interventions that

should ideally be included in an HIV response to minimize HIV-related disability-adjusted life

years (DALYs), and (c) the cost-effectiveness of the HIV response in terms of cost per DALY

averted.

We chose to focus on HIV investments for a number of reasons. Firstly, evidence suggests

that there is some uncertainty over the levels of both international[14] and domestic funding
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[15] for HIV programming in coming years. This is especially true in lower- and lower-mid-

dle-income countries where HIV programming has historically been heavily donor-depen-

dent. An investigation of the relationship between investment levels and cost-effectiveness is

therefore timely[14]. Secondly, studies have suggested that the nonlinearities between invest-

ment and cost-effectiveness are likely to be particularly pronounced in the case of HIV[3],

making it a good candidate for investigation. Thirdly, ongoing efforts support the maintenance

of a unit-cost database for HIV interventions[16], and whilst this is expected to provide a

wealth of data, it may also encourage users of these data to assume that linear cost functions

apply to HIV interventions. Thus, it is again timely to investigate whether linearity is a reason-

able assumption and if not, what other data should be collected to inform more sophisticated

and accurate cost functions. Finally, the question of how many programs to maintain as part

of an effective HIV response is relevant for all countries. The Joint United Nations Programme

on HIV/AIDS (UNAIDS) advocates a combination prevention approach, with 25% of HIV

budgets allocated towards primary prevention programs. This involves the simultaneous use

of complementary behavioral, biomedical and structural prevention strategies[17], and there is

evidence to suggest that these complementary strategies have been effective in reducing new

infections. However, implementing a very wide range of combination prevention approaches

may also run the risk of spreading investments too thinly over too many interventions. Some

studies suggest this could be less effective than funding fewer interventions at greater levels[3].

The four case studies presented here aim to provide some insights in how to adapt the com-

bination prevention approach to different epidemic types and funding landscapes.

Methods

Mathematical model

These analyses used Optima HIV (v2.5.1, available at hiv.optimamodel.com), a compartmental

model of HIV transmission and disease progression linked to a programmatic response mod-

ule. Optima HIV is capable of estimating the optimal allocation of a total HIV budget across

different programs in order to produce the outcome best aligned with particular targets. For

example, the model can be used to estimate the allocation of funding that would minimize

HIV infections, or that would get as close as possible to national strategic targets[18].

Overview of case studies

Optima HIV has been used by numerous national governments over the past six years to sup-

port analyses of their HIV responses[19]. Of these, we selected four case studies from four dif-

ferent regions of the world, with each country selected on the basis of the following criteria: (1)

that the country had total HIV spending data (as reported in a National AIDS Spending

Assessment or similar framework) from 2014 or more recent; and (2) that the country repre-

sented the largest possible share of the regional burden of people living with HIV. Applying

these criteria, we selected Myanmar[20], Belarus[21], Togo[22], and Peru[23], which represent

a range of epidemic types and funding landscapes. A summary of the main characteristics of

each country’s HIV epidemic and response is provided in Table 1.

Model inputs and calibration

The epidemic model within Optima HIV was populated with country-specific behavioral, clin-

ical, demographic and programmatic data from 2000 until the latest year for which data were

available. Input data types and sources are summarized in Table 2. In Belarus and Togo the

most recent data were from 2014, while in Peru and Myanmar the most recent data were from
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2015. The epidemic model was calibrated to available data on HIV prevalence, population sizes,

number of people on treatment, and number of PLHIV. Uncertainty estimates were generated

around the model projections using an Approximate Bayesian Computation (ABC) algorithm

[30], with prior distributions defined over two types of parameters: HIV prevalence in each pop-

ulation in the year 2000, and a population-specific scalar that applies to the time-varying and

data-informed probability of transmitting HIV. By sampling from the prior distributions of

these parameters, we obtained a set of possible epidemic outcomes at each point in time.

HIV responses and cost functions

The HIV response in each country was analyzed with the aim of understanding the impact of

expenditure on programmatic outcomes. Programs were classified into either targeted or non-
targeted programs. The former category consisted of all programs that directly affect one of the

proximal determinants of HIV infection or disease progression (for example, condom distri-

bution programs), while the latter was comprised of all crosscutting programs (including man-

agement, infrastructure, monitoring and evaluation, education and empowerment for young

women, and other HIV care). For the targeted programs, cost functions relating program

expenditure to the number of people covered and to behavioral or clinical outcomes were esti-

mated. These were validated by national health departments of each country. Key parameter

values needed to define each cost function consisted of the (a) average cost of reaching some-

one with the program at the current level of operations, (b) estimated maximal attainable cov-

erage of the program, and (c) program impact in terms of behavioral or clinical outcomes (for

example, the difference in HIV testing rates or condom usage for those covered by the pro-

gram versus those not covered). Parameter values were allowed to vary uniformly over ranges

within 10% of country-specified values, and by sampling from these distributions, we obtained

a set of cost functions for each program.

Table 1. Key characteristics of the HIV epidemic and response in Myanmar, Belarus, Togo and Peru. Acronyms used: PWID: people who inject drugs;

FSW: female sex workers; MSM: men who have sex with men.

MYANMAR BELARUS TOGO PERU

HIV epidemic

People living with HIV

(2015)[24]

220,000 35,000 110,000 66,000

Adult (15–49) HIV

prevalence (2015) [24]

0.8% 0.6% 2.4% 0.3%

HIV prevalence among key

populations

PWID: 23.3% (2014)[25]

FSW: 6.3% (2014)[25]

MSM: 6.6% (2014)[25]

PWID: 14.2% (2013)

FSW: 5.8% (2013)

MSM: 6.2% (2013)

PWID: 5.5% (2014)[26]

FSW: 16.8% (2014)[27]

MSM: 16.6% (2014)[28]

FSW: 2.13% (2011)[29]

MSM: 12.4% (2011)[29]

Transgender women:

20.8% (2011)[29]

Characteristics Greatest proportion of

new infections among

PWID and their partners

Greatest proportion of

new infections among

PWID and their partners

Greatest proportion of new infections

among females 25–49. Among key

populations, infections are highest

among FSW and their clients

Greatest proportion of new

infections among MSM and

transgender women

HIV response 2015 2014 2014 2015

Total HIV investment US$69m US$20m US$21m US$92m

Total HIV investment per

person with HIV

US$314 US$571 US$191 US$1,394

Domestically-funded share

of HIV investment

12% 71% 25% >99%

Share and percentage (%) of

HIV investment allocated to

targeted programs

US$51m (74%) US$9.5m (48%) US$12m (59%) US$88m (96%)

https://doi.org/10.1371/journal.pone.0185077.t001
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These studies did not attempt to establish cost functions for non-targeted programs, since

the impact of these programs on HIV incidence and AIDS-related deaths could not be directly

quantified in the same way it can be for targeted programs.

Cost-effectiveness calculations

For each country, we used Optima HIV’s optimization algorithm to estimate the minimum

number of cumulative DALYs that would accrue between 2017 and 2030 under a set of annual

budgets for targeted programs, ranging from 0% to 200% in 10% increments of the total

amount available in the latest reported year (Table 1). The optimization algorithm consists of

the following steps: firstly, an initial funding distribution is specified and the epidemiological

outcome under this distribution is calculated. Secondly, the amount of funding allocated to

one program is changed and the model is rerun under the new allocation of funding (normal-

ized to preserve the total budget). If the outcome was improved, the new funding distribution

Table 2. Key parameters used to inform the transitions for the epidemiological model.

Transitions Data types Value

Infection Sexual behavioral data (number of acts per year &

probability of condom use with regular, casual and

commercial partners)

Time-varying and population-specific sources and values

for Myanmar[20], Belarus[21], Togo[22], and Peru[23]

Injecting behavioral data (number of injections per year

and probability of needle-syringe sharing)

Time-varying and population-specific sources and values

for Myanmar[20], Belarus[21], Togo[22], and Peru[23]

Intervention uptake (% of people accessing PrEP,

circumcision, ART, OST and PMTCT)

Time-varying and population-specific sources and values

for Myanmar[20], Belarus[21], Togo[22], and Peru[23]

Per-act transmission probabilities [31]

Efficacy of interventions [31]

Partnership formation patterns Sources and values for Myanmar[20], Belarus[21], Togo

[22], and Peru[23]

Diagnosis % of population tested for HIV in the last 12 months Time-varying and population-specific, sources and values

provided in reports for Myanmar[20], Belarus[21], Togo[22],

and Peru[23]

Treatment initiation Matched to number of people receiving ART Time-varying and population-specific, sources and values

provided in reports for Myanmar[20], Belarus[21], Togo[22],

and Peru[23]

CD4 progression Duration of acute infection 0.24 [0.10–0.30] years [31]

Time to move from CD4�500 to 350�CD4<500 0.95 [0.62–1.16] years [31]

Time to move from 350�CD4<500 to 200�CD4<350 3.00 [2.83–3.16] years [31]

Time to move from 200�CD4<350 to 50�CD4<200 3.74 [3.48–4.00] years [31]

Time to move from 50�CD4<200 to CD4<50 1.50 [1.13–2.25] years [31]

CD4 recovery on

suppressive ART

Time to move from 350<CD4<500 to CD4>500 2.20 [1.07–7.28] years [31]

Time to move from 200<CD4<350 to 350<CD4<500 1.42 [0.90–3.42] years [31]

Time to move from 50<CD4<200 to 200<CD4<350 2.14 [1.39–3.58] years [31]

Time to move from CD4<50 to 50<CD4<200 0.66 [0.51–0.94] years [31]

Time from treatment initiation to viral suppression 0.20 [0.10–0.30] years [31]

CD4 progression & recovery

on non-suppressive ART

% moving from CD4>500 to 350<CD4<500 per year 2.60 [0.50–27.50]% [31]

% moving from 350<CD4<500 to CD4>500 per year 15.00 [3.80–88.50]% [31]

% moving from 350<CD4<500 to 200<CD4<350 per year 10.00 [2.20–87.00]% [31]

% moving from 200<CD4<350 to 350<CD4<500 per year 5.30 [0.80–82.70]% [31]

% moving from 200<CD4<350 to 50<CD4<200 per year 16.20 [5.00–86.90]% [31]

% moving from 50<CD4<200 to 200<CD4<350 per year 11.70 [3.20–68.60]% [31]

% moving from 50<CD4<200 to CD4<50 per year 9.00 [1.90–72.30]% [31]

% moving from CD4<50 to 50<CD4<200 per year 11.10 [4.70–56.30]% [31]

https://doi.org/10.1371/journal.pone.0185077.t002
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is accepted; otherwise, the distribution from the previous step is retained. This second step is

repeated (on subsequent iterations, the choice of program based on probability distributions

learned from previous iterations) until the solution converges. Further details are provided in

[32].

For each budget, we calculated interquartile ranges around the estimated cumulative num-

ber of DALYs by drawing 5000 samples from the joint prior distribution of the parameters of

the epidemic model and the parameters of the cost functions. We also calculated the cost-effec-

tiveness ratios (with interquartile ranges) for each possible budget, relative to a zero-invest-

ment scenario. We use a hybrid approach for calculating DALYs (as detailed in [33]), with

disability weights given in [31].

Results

In Figs 1–4, we present results relating the level and allocation of investments in the HIV

response to the outcome in terms of DALYs. We call this graphical presentation of results an

investment staircase. Such investment staircases have been used in several Optima HIV studies

[19], and are a useful tool for establishing investment priorities when budgets are uncertain.

Across all four case studies, we found that when very little money is available (for example,

less than 50% of the amount available for targeted programs in the most recent year for which

spending data were available), the optimal strategy is to focus on funding fewer programs in

order to take advantage of economies of scale. Treatment programs, including both antiretro-

viral therapy (ART) and prevention of mother-to-child transmission (PMTCT) are the most

important programs to retain, due to the important role that ART plays both in averting deaths

and in lowering transmission risk. As more resources become available, a greater number of

programs are included in the most cost-effective HIV response.

Fig 1. Investment staircase for Belarus. Illustrates the relationship between total (optimized) investments in the HIV response (right panel), and the

overall outcome in terms of cumulative DALYs from 2017–2030 of that response (left panel; black bars indicate interquartile ranges).

https://doi.org/10.1371/journal.pone.0185077.g001
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Fig 3. Investment staircase for Peru. Illustrates the relationship between total (optimized) investments in the HIV response (right panel), and the

overall outcome in terms of cumulative DALYs from 2017–2030 of that response (left panel; black bars indicate interquartile ranges).

https://doi.org/10.1371/journal.pone.0185077.g003

Fig 2. Investment staircase for Myanmar. Illustrates the relationship between total (optimized) investments in the HIV response (right panel), and

the overall outcome in terms of cumulative DALYs from 2017–2030 of that response (left panel; black bars indicate interquartile ranges).

https://doi.org/10.1371/journal.pone.0185077.g002
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In Belarus (Fig 1), US$12m was spent on targeted HIV programs in 2014. According to the

modeling analyses, if this same amount of funding were available annually between 2017 and

2030 and optimally allocated to minimize the number of cumulative DALYs, HIV treatment

and opiate substitution therapy (OST) would be the highest priority programs to fund. With

this allocation of the latest reported annual budget of US$12m, we estimate that the response

would avert 65% [62%–74%] of DALYs over the period from 2017–2030 relative to no invest-

ment. Roughly the same allocation to the same priority programs would also be the optimal

response at lower levels of funding. However, with less funding available, the predicted num-

ber of DALYs is higher. If more funds were available, the modeling analyses suggest that the

optimal strategy would be to scale up these priority program areas and gradually introduce

additional programs: investment in MSM programs would form part of the optimal HIV

response if 120% of the 2014 budget were available, and investment in FSW programs if 170%

of the 2014 budget were available.

In Myanmar (Fig 2), we found some similarities with Belarus. In both countries the HIV

epidemic is primarily driven by PWID, and in both countries the modeling analyses found

that if spending were optimized to minimize cumulative DALYs, then programs targeted to

this population would be funded. However, there are also some notable differences. Invest-

ment in FSW programs was estimated to be highly effective in Myanmar and this program is

therefore part of the optimal mix of investments even at very low funding levels. According to

model estimates, if the 2015 budget for targeted programs were annually available each year

between 2017 and 2030 and optimally allocated to minimize cumulative DALYs, it would avert

85% [83%–88%] of DALYs relative to no investment.

In Peru (Fig 3), we also found that investment in FSW programs form part of the optimal

HIV response at low funding levels, but that further scale-ups in these programs will not

Fig 4. Investment staircase for Togo. Illustrates the relationship between total (optimized) investments in the HIV response (right panel), and the

overall outcome in terms of cumulative DALYs from 2017–2030 of that response (left panel; black bars indicate interquartile ranges).

https://doi.org/10.1371/journal.pone.0185077.g004
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achieve large gains. This may be attributed to the already-high rates of condom use in the FSW

population. Investments in FSW programs in 2015 were around 7 times higher than in 2007,

and despite low program coverage in 2007 (22%), condom use among FSW was already high

at 72%[34]. On the other hand, further investment in programs targeting MSM and transgen-

der women was estimated to be an effective use of resources. We found that investments in

HIV testing programs for the general population should form part of the optimal HIV

response only at higher levels of investment; at lower levels, a more targeted testing strategy (as

is already included within programs targeted at key populations) is recommended.

In Togo (Fig 4), we found that if annual investments do not increase above their 2014 levels,

the modeling results suggest that maintaining the ART and PMTCT programs would be the

highest priority to minimize DALYs. Only around 32% of all PLHIV were receiving treatment

in Togo in 2014[22] and providing treatment to those in need is a priority. If the annual budget

increased by 10% over 2014 levels, investments in FSW programs and HIV testing would be

prioritized by the model as part of the optimal mix.

In both Myanmar and Peru (Figs 2 and 3), there is a sharp decrease in the projected number

of DALYs as annual investment in direct programs increase from 0% to 60% of the latest

reported annual investment level. If investment in targeted programs were 50% of their levels

in the latest reported year and optimally allocated to minimize DALYs, this would already

avert an estimated 61% [54%–67%] of DALYs in Myanmar and 79% [67%–85%] in Peru rela-

tive to a zero-investment scenario. However further increases in investment are estimated to

have a smaller marginal impact. By contrast, the decline in marginal impact for Belarus and

Togo (Figs 1 and 4) is more gradual, but steady. In Togo, this is likely to be because investment

in the HIV response is quite low, and so there is still opportunity for significant gains through

increased funding. In Belarus, it is likely to be because the epidemic is increasing, and so

higher levels of investment could assist in better controlling the epidemic.

The current state of HIV care and treatment in each country was an important factor in

determining how investments in HIV testing programs should be prioritized. In all four case

studies, there was a pool of people who had already been diagnosed with HIV, but had not yet

been initiated on treatment. Our analyses found that HIV testing programs should not be

scaled up until those already diagnosed had been initiated on ART. HIV testing programs

were estimated to form part of the optimal mix when investment levels reached 110% of their

most recent levels in Peru and Togo (Figs 3 and 4), 180% in Myanmar (Fig 2), and 250% in

Belarus (not shown).

In Table 3, we present the cost per DALY averted for each country at levels of investment

ranging from 0% to 500% of the level invested in targeted programs in the latest reported year.

In each case we compare the set of all targeted interventions at different budgets to a scenario

in which no investments in the HIV response were made and calculated the cost per DALY

averted. For each country, the cost per DALY averted was estimated to increase with increased

investment in targeted programs. However, even at higher investment levels, the cost per

DALY averted remains below the per-capita GDP in each country.

Discussion

We have presented results linking the total amount of investment in HIV responses to (a) the

number of interventions estimated to constitute the optimal response (according to our math-

ematical model) and (b) the outcome (in terms of cumulative DALYs) associated with that

response. For the four case studies that were considered here, some general principles apply.

Specifically, we found that it is generally optimal to focus on a smaller number of HIV pro-

grams if budgets are highly constrained, and that ART should be prioritized. We also found
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some important differences in the way that cost-effectiveness changes as a function of total

investment, which indicates that these kinds of analyses should be applied on a country-by-

country basis in the context of the country’s health sector objectives and system capacity in

order to draw the most relevant and useful messages.

We note some limitations to this study. Firstly, the results are only as reliable as the data

upon which they were based. To the extent possible, we have accounted for the uncertainties

in underlying data using appropriate statistical methods, and by reporting ranges around esti-

mates. Secondly, the interventions selected by the model depend to a large extent on the objec-

tive that it being targeted. For this analysis, it was necessary to employ a standardized objective

in order to enable meaningful cost-effectiveness calculations, and so we focused on finding the

allocation of funding across different programs estimated to minimize the number of cumula-

tive DALYs between 2017–2030. For practical policy purposes, however, each country will

have different national priorities, and therefore the optimal allocation of funding across the

HIV response may differ from that which we present here.

In making the connection between total investment levels and the number of programs to

fund, we have employed investment staircases, which serve as a useful visualization tool for

guiding prioritization of program maintenance or funding. In addition, the relationships

between the level of investment in the HIV response and the overall (optimized) outcome of

the response can serve as a basis to guide intra-regional or intra-disease allocations. This meth-

odology has been employed in some studies already[36, 37], and will be detailed more explic-

itly in forthcoming work.

Table 3. Cost per DALY averted by optimally allocated HIV responses at different budget levels in Myanmar, Belarus, Togo and Peru.

MYANMAR BELARUS TOGO PERU

Per-capita GDP in 2015 (US$)[35] $1162 $5741 $636 $6027

Cost per DALY averted (US$) [lower quartile–upper quartile]

% of latest reported annual spending, optimally allocated

50% $84

[$82–$93]

$127

[$126–$133]

$96

[$97–$98]

$571

[$524–$651]

100% $120

[$106–$141]

$144

[$142–$159]

$112

[$110–$115]

$1064

[$865–$1266]

150% $174

[$153–$209]

$181

[$171–$213]

$147

[$142–$153]

$1570

[$1270–$1874]

200% $232

[$201–$279]

$230

[$211–$272]

$188

[$182–$197]

$2078

[$1671–$2482]

250% $377

[$362–$397]

$297

[$266–$340]

$232

[$223–$243]

$2604

[$2090–$3107]

300% $452

[$433–$475]

$349

[$310–$401]

$278

[$267–$292]

$3123

[$2499–$3730]

350% $527

[$504–$553]

$403

[$358–$462]

$325

[$312–$342]

$3643

[$2930–$4357]

400% $599

[$574–$630]

$456

[$403–$526]

$372

[$357–$391]

$4166

[$3338–$4973]

450% $672

[$644–$707]

$512

[$450–$592]

$419

[$402–$440]

$4685

[$3748–$5594]

500% $746

[$715–$785]

$566

[$498–$655]

$466

[$447–$490]

$5244

[$4191–$6221]

Most recent annual HIV spending, allocated as in most recent year

100% $125

[$117–$144]

$259

[$254–$279]

$147

[$146–$154]

$1124

[$1112–$1284]

https://doi.org/10.1371/journal.pone.0185077.t003
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In order to carry out these kinds of analyses, it is essential to have detailed information to

produce cost functions for specific HIV programs. The results of the four case studies pre-

sented in this paper were based on nonlinear cost functions that contained saturation effects

once investment levels were very high. These saturation effects were intended to capture the

fact that the costs of extending program coverage to the most difficult-to-reach groups are

much higher. Capturing such nonlinearities required more detailed information on program

costs than simple unit cost approaches allow.

The cost functions that were employed for these analyses were available thanks to the

detailed allocative efficiency studies that had been conducted in partnership with national pro-

gram experts. In general, in order to produce estimates of cost functions, we recommend that

countries collect: (a) unit costs of programs; (b) total expenditure; (c) total coverage levels

attained for each program; (d) the proportion of the total expenditure on each program allo-

cated to targeted vs non-targeted (fixed) costs; (e) the estimated size of the target population,

along with more detailed profiling that would enable estimates of the maximal feasible cover-

age levels of the target population; and, (f) supply- and demand-side constraints to expansion.

Data such as these would permit cost-effectiveness analyses to be done more readily.

Cost-effectiveness analyses are essential to guide the large investments committed to HIV

programming. Linking cost-effectiveness analyses to budget levels and program coverage is

crucial to maximizing the impact of investments. This is particularly true in the current cli-

mate, when future funding may be uncertain.

Acknowledgments

The authors are grateful for the collaborative efforts of the teams who worked on the allocative

efficiency studies conducted in Myanmar, Peru, Togo, and Belarus as part of the country-led

studies funded by the World Bank’s allocative efficiency program for country planning. Those

activities were conducted separately to this research project but discussions in the country

planning activities were valuable in highlighting distinct principles of relevance to other set-

tings globally which created some motivation for this research study. We value the leadership

of our country partners in ongoing relationships and Optima modeling activities to guide HIV

response planning and decision making in each country. We also acknowledge Emiko Masaki,

Marelize Gorgens and David Wilson (World Bank), who provided useful guidance on this

study.

Author Contributions

Conceptualization: Robyn M. Stuart, David P. Wilson.

Data curation: Hassan Haghparast-Bidgoli, Janne Estill, Laura Grobicki, Zofia Baranczuk,

Lorena Prieto, Vilma Montañez, Iyanoosh Reporter, Richard T. Gray, Clemens J. Benedikt,

Rowan Martin-Hughes, S. Azfar Hussain, Sherrie L. Kelly.

Formal analysis: Robyn M. Stuart, Hassan Haghparast-Bidgoli, Janne Estill, Laura Grobicki,

Zofia Baranczuk, Lorena Prieto, Vilma Montañez, Iyanoosh Reporter, Richard T. Gray,

Clemens J. Benedikt, Rowan Martin-Hughes, S. Azfar Hussain, Sherrie L. Kelly.

Funding acquisition: David P. Wilson.

Methodology: Robyn M. Stuart, Cliff C. Kerr, David J. Kedziora, David P. Wilson.

Project administration: Robyn M. Stuart, Nejma Cheikh, Krittayawan Boonto, Sutayut

Osornprasop, Fernando Lavadenz, David P. Wilson.

Software: Robyn M. Stuart, Cliff C. Kerr, David J. Kedziora.

Using optimal expansion pathways to prioritize HIV responses

PLOS ONE | https://doi.org/10.1371/journal.pone.0185077 October 3, 2017 11 / 13

https://doi.org/10.1371/journal.pone.0185077


Supervision: Jolene Skordis-Worrall, Olivia Keiser, David P. Wilson.

Writing – original draft: Robyn M. Stuart.

Writing – review & editing: Robyn M. Stuart, Cliff C. Kerr, Hassan Haghparast-Bidgoli,

Janne Estill, Laura Grobicki, Zofia Baranczuk, Jolene Skordis-Worrall, Olivia Keiser, Clem-

ens J. Benedikt, Rowan Martin-Hughes, Sherrie L. Kelly, David J. Kedziora, David P.

Wilson.

References
1. Youngkong S, Kapiriri L, Baltussen R. Setting priorities for health interventions in developing countries:

a review of empirical studies. Tropical Medicine & International Health. 2009; 14(8):930–9. https://doi.

org/10.1111/j.1365-3156.2009.02311.x PMID: 19563479

2. Alistar SS, Brandeau ML. Decision making for HIV prevention and treatment scale up: Bridging the gap

between theory and practice. Medical Decision Making. 2012; 32(1):105–17. https://doi.org/10.1177/

0272989X10391808 PMID: 21191118.

3. Brandeau ML, Zaric GS. Optimal investment in HIV prevention programs: more is not always better.

Health care management science. 2009; 12(1):27–37. PMID: 19938440; PubMed Central PMCID:

PMCPMC2786080.

4. Guinness L, Kumaranayake L, Hanson K. A cost function for HIV prevention services: is there a ’u’—

shape? Cost effectiveness and resource allocation: C/E. 2007; 5:13. Epub 2007/11/07. https://doi.org/

10.1186/1478-7547-5-13 PMID: 17983475; PubMed Central PMCID: PMCPMC2206005.

5. Kumaranayake L. The economics of scaling up: cost estimation for HIV/AIDS interventions. AIDS (Lon-

don, England). 2008; 22 Suppl 1:S23–33. Epub 2008/08/02. https://doi.org/10.1097/01.aids.

0000327620.47103.1d PMID: 18664950.

6. Bautista-Arredondo S, Gadsden P, Harris JE, Bertozzi SM. Optimizing resource allocation for HIV/AIDS

prevention programmes: an analytical framework. AIDS (London, England). 2008; 22 Suppl 1:S67–74.

Epub 2008/08/02. https://doi.org/10.1097/01.aids.0000327625.69974.08 PMID: 18664956.

7. Pham QD, Wilson DP, Kerr CC, Shattock AJ, Do HM, Duong AT, et al. Estimating the Cost-Effective-

ness of HIV Prevention Programmes in Vietnam, 2006–2010: A Modelling Study. PloS one. 2015; 10

(7):e0133171. https://doi.org/10.1371/journal.pone.0133171 PMID: 26196290; PubMed Central

PMCID: PMC4510535.

8. Van Den Berg C, Smit C, Van Brussel G, Coutinho R, Prins M. Full participation in harm reduction pro-

grammes is associated with decreased risk for human immunodeficiency virus and hepatitis C virus:

evidence from the Amsterdam Cohort Studies among drug users. Addiction (Abingdon, England). 2007;

102(9):1454–62. Epub 2007/08/19. https://doi.org/10.1111/j.1360-0443.2007.01912.x PMID:

17697278; PubMed Central PMCID: PMCPMC2040242.

9. Degenhardt L, Mathers B, Vickerman P, Rhodes T, Latkin C, Hickman M. Prevention of HIV infection

for people who inject drugs: why individual, structural, and combination approaches are needed. Lancet

(London, England). 2010; 376(9737):285–301. Epub 2010/07/24. https://doi.org/10.1016/s0140-6736

(10)60742-8 PMID: 20650522.

10. Vassall A, Pickles M, Chandrashekar S, Boily MC, Shetty G, Guinness L, et al. Cost-effectiveness of

HIV prevention for high-risk groups at scale: an economic evaluation of the Avahan programme in south

India. The Lancet Global health. 2014; 2(9):e531–40. Epub 2014/10/12. https://doi.org/10.1016/S2214-

109X(14)70277-3 PMID: 25304420.

11. Walker PGT, Griffin JT, Ferguson NM, Ghani AC. Estimating the most efficient allocation of interven-

tions to achieve reductions in Plasmodium falciparum malaria burden and transmission in Africa: a

modelling study. The Lancet Global Health. 2016; 4(7):e474–e84. https://doi.org/10.1016/S2214-109X

(16)30073-0 PMID: 27269393

12. Scott N, Hussain SA, Martin-Hughes R, Fowkes FJI, Kerr CC, Pearson R, et al. Maximizing the impact

of malaria funding through allocative efficiency: using the right interventions in the right locations.

Malaria Journal. 2017; 16(1):368. https://doi.org/10.1186/s12936-017-2019-1 PMID: 28899373

13. Howard AA, Hirsch-Moverman Y, Frederix K, Daftary A, Saito S, Gross T, et al. The START Study to

evaluate the effectiveness of a combination intervention package to enhance antiretroviral therapy

uptake and retention during TB treatment among TB/HIV patients in Lesotho: rationale and design of a

mixed-methods, cluster-randomized trial. Global Health Action. 2016; 9. https://doi.org/10.3402/gha.v9.

31543 PMID: 27357074.

Using optimal expansion pathways to prioritize HIV responses

PLOS ONE | https://doi.org/10.1371/journal.pone.0185077 October 3, 2017 12 / 13

https://doi.org/10.1111/j.1365-3156.2009.02311.x
https://doi.org/10.1111/j.1365-3156.2009.02311.x
http://www.ncbi.nlm.nih.gov/pubmed/19563479
https://doi.org/10.1177/0272989X10391808
https://doi.org/10.1177/0272989X10391808
http://www.ncbi.nlm.nih.gov/pubmed/21191118
http://www.ncbi.nlm.nih.gov/pubmed/19938440
https://doi.org/10.1186/1478-7547-5-13
https://doi.org/10.1186/1478-7547-5-13
http://www.ncbi.nlm.nih.gov/pubmed/17983475
https://doi.org/10.1097/01.aids.0000327620.47103.1d
https://doi.org/10.1097/01.aids.0000327620.47103.1d
http://www.ncbi.nlm.nih.gov/pubmed/18664950
https://doi.org/10.1097/01.aids.0000327625.69974.08
http://www.ncbi.nlm.nih.gov/pubmed/18664956
https://doi.org/10.1371/journal.pone.0133171
http://www.ncbi.nlm.nih.gov/pubmed/26196290
https://doi.org/10.1111/j.1360-0443.2007.01912.x
http://www.ncbi.nlm.nih.gov/pubmed/17697278
https://doi.org/10.1016/s0140-6736(10)60742-8
https://doi.org/10.1016/s0140-6736(10)60742-8
http://www.ncbi.nlm.nih.gov/pubmed/20650522
https://doi.org/10.1016/S2214-109X(14)70277-3
https://doi.org/10.1016/S2214-109X(14)70277-3
http://www.ncbi.nlm.nih.gov/pubmed/25304420
https://doi.org/10.1016/S2214-109X(16)30073-0
https://doi.org/10.1016/S2214-109X(16)30073-0
http://www.ncbi.nlm.nih.gov/pubmed/27269393
https://doi.org/10.1186/s12936-017-2019-1
http://www.ncbi.nlm.nih.gov/pubmed/28899373
https://doi.org/10.3402/gha.v9.31543
https://doi.org/10.3402/gha.v9.31543
http://www.ncbi.nlm.nih.gov/pubmed/27357074
https://doi.org/10.1371/journal.pone.0185077


14. The Henry J. Kaiser Family Foundation. Financing the Response to HIV in Low- and Middle-Income

Countries: International Assistance from Donor Governments in 2015. 2016.

15. Resch S, Ryckman T, Hecht R. Funding AIDS programmes in the era of shared responsibility: an analy-

sis of domestic spending in 12 low-income and middle-income countries. The Lancet Global health.

2015; 3(1):e52–61. Epub 2014/12/30. https://doi.org/10.1016/S2214-109X(14)70342-0 PMID:

25539970.

16. Unit Cost Repository [Internet]. 2017. Available from: http://www.avenirhealth.org/PolicyTools/UC/.

17. UNAIDS. Combination HIV Prevention: Tailoring and Coordinating Biomedical, Behavioural and Struc-

tural Strategies to Reduce New HIV Infections. 2010.

18. Kerr CC, Stuart RM, Gray RT, Shattock AJ, Fraser-Hurt N, Benedikt C, et al. Optima: A Model for HIV

Epidemic Analysis, Program Prioritization, and Resource Optimization. Journal of acquired immune

deficiency syndromes (1999). 2015; 69(3):365–76. Epub 2015/03/25. https://doi.org/10.1097/QAI.

0000000000000605 PMID: 25803164.

19. Stuart RM, Grobicki L, Haghparast-Bidgoli H, Skordis-Worrall J, Keiser O, Estill J, et al. How should HIV

resources be allocated? Lessons learnt from applying Optima HIV in 25 countries. 2017.

20. The World Bank. Allocating HIV funding efficiently in Myanmar. 2017.

21. The World Bank. Optimizing Investments in Belarus for the National HIV Response. 2015.

22. The World Bank. Optimizing Investments in Togo’s HIV Response. 2017.

23. The World Bank. Optimización de las inversiones para la respuesta al HIV en Perú. 2017.
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