close Icon

Evidence that multiple defects in murine DC-SIGN inhibit a functional interaction with pathogens.

Gramberg T, Caminschi I, Wegele A, Hofmann H, Pöhlmann S

VIEW FULL ARTICLE
  • Journal Virology

  • Published 17 Nov 2005

  • Volume 345

  • ISSUE 2

  • Pagination 482-91

  • DOI 10.1016/j.virol.2005.10.008

Abstract

Certain viruses, bacteria, fungi and parasites target dendritic cells through the interaction with the cellular attachment factor DC-SIGN, making this C-type lectin an attractive target for therapeutic intervention. Studies on DC-SIGN function would be greatly aided by the establishment of a mouse model, however, it is unclear if the murine (m) homologue of human (h) DC-SIGN also binds to pathogens. Here, we investigated the interaction of mDC-SIGN, also termed CIRE, with the Ebolavirus glycoprotein (EBOV-GP), a ligand of hDC-SIGN. We found that mDC-SIGN neither binds EBOV-GP nor enhances infection by reporterviruses pseudotyped with EBOV-GP. Analysis of chimeras between mDC-SIGN and hDC-SIGN provided evidence that determinants in the carbohydrate recognition domain and in the neck domain of mDC-SIGN inhibit a functional interaction with EBOV-GP. Moreover, mDC-SIGN was found be monomeric, suggesting that lack of multimerization, which is believed to be required for efficient pathogen recognition by hDC-SIGN, might be one factor that prevents binding of mDC-SIGN to EBOV-GP. Our results suggest that mDC-SIGN on murine dendritic cells is not an adequate model for pathogen interactions with hDC-SIGN.